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ABSTRACT

The acoustic diffraction phenomena which occur at the edges of a
baffle is investigated both experimentally and theoretically. Various
sharp-edged and cylindrical-edged baffles were constructed in which
geometry, impedance, and structural resonances were controlled. Data
were obtained as a function of incident pressure, angle of incidence,
and frequency, using two transducers, one in the far field and one on the
baffle surface. Also investigated is the effect of placing small
scattering barriers at the edge of rigid baffle surfaces. The Geometrical
Theory of Diffraction is used to develop a theoretical model for the
calculation of patterns. Both Sommerfeld and Malyuzhinets diffraction
coefficients are discussed along with the utilization of a transition
region function to remove singularities. Patterns obtained with rigid
baffle surfaces exhibited ripples in the insonified region while soft
baffles gave rise to a smooth 'bell-shaped' directivity pattern with
highly attenuated diffraction fields. Asymmetric patterns resulted when
a transducer was positioned close to one edge of a finite baffle. The
good agreement obtained between theory and experiment confirms the

validity of the Geometrical Theory of Diffraction.
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CHAPTER I

INTRODUCTION

k.1 General Introduction

The generation and propagation of sound in an infinite isovelocity
medium is a well understood phenomenon. If boundaries are introduced,
standing waves, diffraction, and transmission phenomena arise. Diffrac-
tion is usually considered a modification that sound undergoes in
passing the edges of rigid or impedance bodies. This phenomenon is
present in any wave analysis problem.

The study of sound in fluids has generally been limited to air
and water. The impedance characteristics of these two media differ by
several orders of magnitude. A large impedance mismatch is required to
obtain good rigid or soft surfaces. Since air has a low characteristic
impedance, almost any solid material constitutes a rigid surface. A
soft surface is very difficult, if not impossible, to achieve in air.
Conversely, in water, a soft surface is easily produced, whereas a rigid
surface is difficult to achieve because the characteristic impedance of
water is only a factor of thirty less than that of materials with the
highest impedance.

Because of the relative ease of testing, most investigations of
diffraction have been performed in air on objects such as rigid spheres,
cylinders, disks, square plates, cubes, and circular cones. Very few

investigations have been made in water.
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The literature contains various theories, both approximate and
exact, but because of the complexities of diffraction theory, their
validity must be checked by experimental data. Of special interest is
the approximate but powerful Geometrical Theory of Diffraction developed

by Keller.15

1.2 Problem to be Studied

Transducer arrays, which typically consist of several piezo-
electric elements, are usually positioned in a support mechanism (baffle).

The array designer is often troubled by the fact that the array elements

near the edge of the baffle have an asymmetrically higher response in
the edge direction. This phenomenon is due to the diffraction of sound
around the edge of the baffle nearest the transducer element.

It is the object of this research to obtain experimental data that 1

define the diffraction phenomena for a source (receiver) mounted on a

finite baffle. In addition, directivity patterns computed by using the
Geometrical Theory of Diffraction are compared with experimental data to
check the validity of the theoretical model. Various baffles were con-
E structed in which geometry, impedance, and structural resonances are

J controlled. Two transducers, one in the far field and one on the baffle
| surface, are used to generate and to monitor the sound field. The data
are obtained as a function of the incident pressure and the angle of
incidence for various frequencies.

The thesis is divided into three main sections. The first section,

Chapter 1I, is a description of the Geometrical Theory of Diffraction.

Both Sommerfeld, see Reference 19, and Malyuzhinet328 diffraction
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coefficients are discussed. The effect of using a transition region
function to remove singularities is also discussed.

The second section, Chapters III and IV, deals with the design of
the wedge and finite baffles and with the experimental setup and pro-
cedure. The wedge baffle has two long, sharp 75° diffraction edges and
a cylindrical edge, each of which can be acoustically isolated from the
other. The finite baffle geometries are a disk, a square, and the end-
cap of a short, circular cylinder.

In the third section, Chapters V and VI, the data are presented
and analyzed. An analysis for the wedge baffle requires only the
inclusion of one diffraction edge since the purpose of these tests is to
check the validit& of the Geometrical Theory of Diffraction using a
single diffraction edge. Data were also gathered using the curved
cylindrical edge of the structure; however, the theory was not developed
for this case.

Each finite baffle was tested in both a rigid and a soft impedance
configuration. Although extensive data were taken, comparison with
theory is limited to only a few cases.

Chapter VII summarizes the results for all the cases investigated,
i.e., for all baffles, frequencies, surface impedances, and source
positions on the baffle.

Also investigated is the effect of placing small scattering
barriers at the edge of rigid or semi-rigid baffle surfaces. Results

of these experiments are included in Chapters V and VI.
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1.3 Historical Background

The first wave treatment of the diffraction phenomenon was given
by Young in 1800. He postulated that the diffracted waves are of local
character since the phenomenon occurs in the vicinity of the shadow
boundary (the geometric boundary between the illuminated and the shadow
areas behind an object). Cylindrical wave fields appear to be emitted
from the straight edge of the object. The observed interference fringes
are explained as interference between the diffracted wave and the
unobstructed incident wave. Fresnel rejected this treatment of diffrac-
tion as a local phenomenon. Utilizing concepts implicit in Huygens'
principle, Fresnel considered the diffraction phenomenon to be a con-
sequence of interference due to an infinitely large number of waves
radiated from virtual sources distributed over the entire aperture ﬁ

surface (the aperture surface being subdivided into circular half-wave

o A

zones). On the basis of the wave theory which he developed, Fresnel 2
demonstrated the remarkable fact that there is an axial brightspot behind
a circular disk illuminated by a point source on its axis. This result

is historically important in that it provided a test of the wave theory

of light. Lord Rayleigh later observed it acoustically. See Reference
27 for more detail.
Kirchhoff utilized Hyugens' principle to derive an integral

equation that expresses the value of the wave field at points within a

region of space in terms of assumed boundary values on the surface
bounding the region. 1In general, this integral equation cannot be
solved. In the early 1900's, Rubinowicz and Kottler reduced Kirchhoff's

surface integral to a line integral which considerably facilitates
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calculation. It also illustrates the differences between physical and
geometrical acoustics and indicates that diffraction around an obstacle
arises from waves which originate at its rim. As shown in Reference 34,
Kirchhoff's theory fails to distinguish between different boundary
conditions (e.g., hard or soft) and between differently shaped obstacles
having the same rim.

Sommerfeld in 1896 was the first person to develop a rigorous
solution for the diffraction of a plane wave by a rigid half-plane (a
special case of the wedge problem). His solution has long been regarded
as a milestone in mathematical physics. He used an extension of image
theory to deduce an integral solution for this problem and showed that
his solution reduces to the Fresnel integral. MacDonald, by applying
the classical method of separation of variables, was the first to obtain
complete solutions for the problems of diffraction of plane, cylindrical,
and spherical waves by a rigid wedge of arbitrary angle.

Since Sommerfeld's analysis, diffraction theory has received
considerable attention in the literature. The inherent difficulty of
the subject, however, has severely limited the number of possible
geometries for which exact solutions may be obtained.

Most of the classical scattering and diffraction problems which
have been solved exactly are those in which the surface of the obstacle
can be identified with a coordinate surface belonging to a set of
coordinates for which the scalar wave equation is separable. There are
eleven such systems of coordinates given in Reference 30. The prolate
spheroid may range from a slightly elongated sphere to a thin rod.

Spence and Grangerl'2 have presented the results of calculations in these
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coordinates for the scattering of a plane sound wave by a prolate

spheroid. A rigorous theory of the diffraction of plane sound waves by
circular disks and apertures can be obtained by using oblate spheroidal
coordinates. The limiting spheroid may be considered as an infinitely
thin disk, while the hyperboloid may be taken as an infinitely thin plane
containing a circular aperture. Spence40 has developed exact solutions
for sound at normal incidence on oblate spheroids which can be applied

to cases in which the disk radius is of the same order of magnitude as
the wavelength.

Numerical results for the sound pressure on the surface of a rigid
disk of zero thickness for perpendicular incidence has also been obtained
by Wiener.47 Spence['1 compares the predictions of Kirchhoff's approxi-
mation with those of the exact theory for the problem of diffraction by
a circular aperture. Numerical solutions of steady-state acoustic
radiation problems have been applied by Copley5 and Schenck36 to
essentially three distinct integral formulations: (1) The Simple Source
Method, adapted from potential theory; (2) the Surface Helmholtz
Integral Equation, obtained from the integral expression for pressure in
the field in terms of surface pressure and normal velocity; and (3) the
Interior Helmholtz Integral Relation, where the surface pressure is
determined by making the integral vanish identically throughout the source
free volume enclosed by the vibrating surface.

Quite arbitrary baffle shapes and impedance boundary conditions
can be handled with this method. An alternative method is the Geometrical
Theory of Diffraction developed by l(eller.15 This method, in contrast to

the integral-equation approach, becomes increasingly more useful and




accurate as the size of the structure, relative to the wavelength,

increases. The Geometrical Theory of Diffraction is an extension of
classical geometrical acoustics which permits a description not only of
the reflection and refraction of acoustic waves but their diffraction
as well. Classical geometric acoustics provides a simple method for
describing the propagation and scattering of high-frequency sound waves.
According to this theory, acoustic energy is regarded as a local
phenomenon that depends on the character of the scattering body in the
immediate vicinity of the point where the scattering occurs.

The Geometrical Theory of Diffraction admits a new class of rays
to the description of scattering phenomena, diffracted rays. These rays
are produced whenever high-frequency acoustic waves impinge on edges,
corners, or tips, or are incident tangentially on curved surfaces. Once
the diffraction coefficient for an edge is known, the description of the
diffracted field is a simple matter of geometry.

Complex baffle geometries and mixed impedance boundary conditions
can be dealt with by this method provided the required diffraction
coefficients can be deduced. Moreover, the theory has been used to
analyze diffraction by a cylinder of arbitrary cross section,12 diffrac-

16,24

tion by a smooth three-dimensional object of any shape, and other

complex diffraction problems.13’17’50

Excellent agreement between these
results and previously known exact results has been found. Although the
fields deduced in this manner are not the exact solutions of the field

equations, they are presumably the leading terms of asymptotic expansions

of such solutions for large values of k .




The Geometrical Theory of Diffraction for an aperture at small

wavelengths has been compared in Reference 14 with the Kirchhoff method,
its two customary modifications, and W. Braunbek's method. Keller
generally concluded that the geometrical theory is as good or better
than the others. Hutchins and Kouyoumjian9 describe an application of
the Geometrical Theory of Diffraction to the calculation of the far-zone
radiation pattern of a linear array mounted in a rigid rectangular box.
The theoretical patterns obtained by this method compare very favorably
with experimental results.

Literature concerned with theoretical analyses of various
diffraction problems is abundant. Barakat2 studied the diffraction of
plane waves by an elliptic cylinder via expansions in Mathieu functions.
Diffraction of a plane small amplitude sound wave incident upon a semi-
infinite thin elastic plate was investigated by G. L. Lamb, Jr.20
Lyamshev26 obtained an exact solution for the problem of diffraction of
a plane wave in a moving medium by a semi-infinite elastic plate. Horton
and Karal7 investigated the problem of plane wave diffraction by the
convex surface of a paraboloid of revolution.

Diffraction of sound around a circular disk was investigated using
the Maggi transformation for distances not far off the axis, and near
the geometrical shadow boundary by Primakoff, Klein, Keller, and

SN considered the nonspecular reflection

Garstensen.34 Again, Twersky
of plane waves from certain surfaces composed of absorbent bosses (semi-
cylinders or hemispheres) on an infinite plane of zero or infinite
impedance. Popov33 analyzed the problem of the diffraction of a plane

wave traveling along a rigid half-plane that is smoothly joined to a

convex cylinder whose radius of curvature is large in comparison with the

it " B —— it ” o




wavelength. Heaps6 theoretically investigated the acoustical pressure
field at a few wavelengths behind a plane disk irradiated by a plane
wave of sound at oblique incidence and of wavelength comparable to the
dimensions of the disk.

The problems of diffraction by "soft" and by "mixed" boundary
conditions have been tried in recent years. Exact and approximate
solutions have been developed for the '"soft" half-plane and right-angled
wedge. Other diffraction problems using various kinds of exotic

4,22,23,35,37,38 i

boundaries and impedances have been examined.

extensive list of these and other pertinent papers is given by Hutchins.8
Experimental investigations of sound diffraction by rigid

obstacles have included spheres, cylinders, disks, square plates, cubes,

and circular cones.21’46’“’48’49

Many interesting results have been
uncovered, but, unfortunately, the vast majority of published work has
been conducted in air with either sound or electromagnetic waves.
Reference 34 reports some experimental tests which were conducted under
water where a hydrophone probed the diffraction field at various dis-
tances behind the disk along a line through the axis and parallel to the
plane of the disk. The disks under test were rather thick and of
(unnecessarily?) complex design to simulate a rigid and a pressure relief
baffle. The qualitative features of the sound field were confirmed. Good
quantitative agreement with theoretical predictions were found for the
first minima from the bright spot, and the level of the pressure at the
edge of the geometrical shadow. Agreement with the peak of the bright
spot was poor and could be due to the non-ideal boundary conditions of

the disk.
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A theoretical study by Kouyoumjian and Hutchins18 at Ohio State
University has investigated the radiation pattern of a point source on
the surface of a three-dimensional box. In this investigation, three
analytical techniques are compared: the eigenfunction solution, Pauli's
equation, and the Geometrical Theory of Diffraction. Of these, only the
eigenfunction solution can be applied when the point source is less than
0.5 wavelengths from an edge, a constraint that is central to the
problem addressed in this research. The problem of computing the
radiation and diffraction pattern from a source located on a right-angle
wedge is highly complicated. An even greater degree of complexity is
introduced when the right-angled wedge is replaced by a curved surface.
This is because diffraction can arise from the discontinuity in the
radius of curvature where the finite curvature of the edge meets the
infinite curvature of the flat plane. Whether or not this is a practical
problem has yet to be determined.

There are other reports, see Reference 3, which concern the
investigation of rather specific and complex structures but which are
not germain to the investigation described in this thesis. Tests con-
ducted on rigid geometries are valid in either medium but the response
of a probe as a function of the angle of incidence has not been treated
in the literature. One exception due to w1ener48 involves a mapping of
the pressure fluctuation across the surface of a disk at various values
of ka for a few specific angles of incidence. However, his values of

ka were smaller than those presented here.
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CHAPTER II

GEOMETRICAL THEORY OF ACOUSTICS AND DIFFRACTION

2.1 Introduction

When the geometry of an object is large in terms of a wavelength,
scattering and diffraction are found to be essentially local phenomena
identifiable with specific parts of the object, e.g., points of specular
reflection, shadow boundaries, and edges. A high frequency technique
developed by Keller and termed the Geometrical Theory of Diffraction
employs diffracted rays in a systemmatic way to describe this phenomenon.
The method is approximate, but in cases where the local radius of curva-
ture is sufficiently greater than a wavelength, it provides the leading
terms in the asymptotic high frequency solution of the wave equation.

In many cases, it gives surprisingly good results for radiating objects
as small as a wavelength in extent.

The Geometrical Theory of Diffraction is an extension of the ray
trace method of geometric acoustics and adds a new class of rays to
geometric acoustics. It is hypothesized that, in addition to direct rays
and reflected rays, diffracted rays will also exist. Admission of
diffracted rays to the theory provides one with the tools required to
compute the complete interference patterns produced by the interaction of
the direct field of a transducer element with the indirect field
scattered from its baffle and housing structure. The principles and
advantages of the Geometrical Theory of Diffraction are summarized in

Table 2.1.
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TABLE 2.1

PRINCIPLES AND ADVANTAGES OF
THE GEOMETRICAL THEORY OF DIFFRACTION

the Principles

A)

B)

c)

D)

E)

Advantages
A)

B)

C)

D)

E)

The direction of diffracted rays is determined from a
generalization of Permat's Principle.

The variation of the field intensity along a diffracted ray
is governed by the conservation of power flow in a tube of
rays.

The variation of the phase of the field along a ray path is
given by -ks , except when the ray crosses a caustic where
a phase jump is introduced.

The value of the field at a reference point where diffraction
occurs is obtained by the solution of a canonical problem
which provides a diffraction coefficient. The field at the
reference point is, in effect, an initial condition.

The simple expressions for the ray diffracted fields fail
at shadow boundaries, and boundaries of the reflected field.

It is conceptually simple.

We can treat radiating structures, which because of their
shape or size in terms of a wavelength would make the
problem intractable otherwise.

Generally speaking, the solutions involve elementary
functions in compact form, which keeps the computation
costs low.

We know the nature of the approximation involved in applying
the Geometrical Theory of Diffraction; the solution becomes
more accurate as the size of the radiating system increases
relative to the wavelength.

We can identify the radiation as emanating from specific parts
of the structure; this is a valuable property when dealing
with the inverse problem of producing a desired radiation
pattern.
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The power of the Geometrical Theory of Diffraction is that it
provides a technique of analyzing scattering from complex bodies by
breaking them up into simpler canonical forms. Although this is an
approximate method for obtaining the terms dominant in acoustic scatter-

ing, it provides an insight into the physical mechanisms.

2.2 Geometrical Acoustics

According to classical geometrical acoustics, the flow of
acoustic energy between two points Ql and Q2 is governed by Fermat's

principle, i.e., it follows a ray path which satisfies

= 0 , (2.1)

where 0J represents the variational derivative, c¢(S) is the sound
velocity of the medium which may vary along the propagation path, and
dS denotes an increment of path length. The physical interpretation of
Equation (2.1) is that sound energy propagates along a path in such a
manner that the time of transit between Q1 and Q2 is a minimum (i.e.,
extremum) of all possible paths between the two points. In homogeneous
media (for which ¢ 1is constant everywhere), it follows from Equation
(2.1) that a minimum transit time path is equivalent to the shortest ray
path between the two points; i.e., a straight line.

The equation describing the field strength along a ray can be
derived from the principle of energy flux conservation in a ray tube.
1f A02 is the intensity of the pressure field at Q1 , where the
cross-sectional area of the ray tube is doo , then the energy flux

2

Ao doo must be conserved at every cross-section of the tube. 1In
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particular, if the intensity is A2 at Q2 , where the ray tube
cross-sectional area is do , the conservation of energy flux requires

that
A doo = A"do . (2.2)

The theory assumes that regular surfaces reflect and that
diffraction is generated at the edges of the diffraction body. The ray
tube is generated by diffraction at an element of the edge of the

diffracting body and is singular at the diffracting edge element that

generates it.
This bundle of rays, shown in Figure 2.1, converges at two lines
with the principal radii of curvature at Q1 of p1 and p2 . The

principal radii of curvature at Q2 are thus + s and pz + s,

P

where s 1is the distance between Ql and Q2 . The cross-sectional

area do0 is given by

S Py S Wy s e

while do 1is given by

do = (p1 + s) d¢1 (02 + s) d¢2 . (2.4)

It follows from Equations (2.2), (2.3), and (2.4) that

/// P1P2
il - (py +8)(py +8) ° Rty
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PATH

Figure 2.1 Ray Tube. A Caustic Occurs at Those Points where One or
Both of the Radii of Curvature of the Wavefront Vanish.
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Thus, the complete expression for the high frequency field at Q2 5

including the phase ¢(Q1) of the field at Q, and the phase change

1
ks along the rays, is given by

-3ke(Q,) / P1P5 -3k[6(Q)) + s]
P(Qz) = A(Qz)e = A (pl T s)(pz T - . (2.6)

o

From Equation (2.6), it can be seen that the geometric acoustics
field becomes infinite at the points s = -pl and s = —p2 s f.ee, at
the centers of curvature of the wavefront. Generally, examination of all
the rays in the ray field shows that the geometrical acoustics field
becomes infinite on surfaces which are the geometrical loci of all the
centers of curvature of the wavefronts. These surfaces are called
caustics. As the ray passes through a caustic line, the sign of (p + s)
changes, and the correct phase shift of m/2 is introduced.

Physically, the field actually observed on caustics is finite;
the divergence predicted by Equation (2.6) simply means that the
geometrical acoustics approximation becomes invalid at and in the
vicinity of caustics, and that other means must be used to determine the
field.

Applied to reflected rays, Fermat's principle states that in the
case of ray paths connecting the points Ql and Q2 , having one point
of contact with a surface, sound energy travels along only that ray path
on which the transit time is a minimum. This condition leads directly
to the well-known law of reflection; namely, that the angle between the
incident ray and the surface normal is equal to the angle between the

normal and the reflected ray (angle of incidence = angle of reflection).

T—
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The field of a reflected ray is given by

P10y -jk[¢inc(Q) 8]
(o, +8)(o, +5) a » (2.7

Pr(Q) = ReA (@

where Rg is the local reflection coefficient, Ainc(Q) is the amplitude
of the incident field at Q , the point of specular reflection, ¢inc(Q)
being the phase of the incident field at Q .

If a curved surface has a shadow boundary, where the rays of the
incident field are tangent to the surface, geometrical acoustics fails
to account for the diffraction of energy into the shadow region. Again,
if the surface has an edge, vertex, or corner, geometrical acoustics
also fails to predict the accompanying diffraction. An examination of
available asymptotic solutions for diffracted fields reveals that they
contain fractional powers of w . It is apparent that in the presence of
a reflecting body, geometric acoustics yields a high frequency approxima-
tion only for that portion of the scattered field which undergoes

specular reflection. It does not predict scattering into shadow zones

and does not allow for scattering by edges or vertices.

2.3 Geometrical Theory of Diffraction

Keller's extension of ray acoustics to include diffracted rays
is commonly referred to as the Geometrical Theory of Diffraction (GTD).
Although admittedly heuristic, it is in keeping with earlier extensions
in the field of optics which introduced the wave nature of light,
polarization, and the Fresnel reflection coefficients when this

information was needed to describe light propagation. The basis of

Keller's theory is the law of edge diffraction.
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2.4 The Law of Edge Diffraction

The law of edge diffraction is suggested by Snell's law of

refraction. It follows in a modified form that may be stated as Fermat's

principle for edge diffraction. An edge-diffracted ray between two

points, Ql and Q2 , is the curve of statiomary path length between

Q1 and Q2 with one point of the ray on the edge. Figure 2.2 indicates
the diffraction of an incident ray from a wedge in a homogeneous medium.
The diffracted rays form a cone whose angle is equal to the angle the
incident ray makes with the edge. If the incident ray is normal to the

edge, then the diffracted rays will form a disk.

! The Geometrical Theory of Diffraction in a homogeneous medium
gives the edge-diffracted contribution to the scattered field in terms
of three factors: 1) a phase factor that accounts for the propagation

Q; of the ray over the length of the path, s , from Q1 to Q 2) a

5
[ & 2
diffraction coefficient that expresses the ratio of the diffracted ray
to the incident ray at the point of diffraction; and 3) a geometrical

factor determined by the incident wave type (plane, spherical, or

cylindrical) and the problem geometry.

25 Geometrical Spreading Factor

The field on a single diffracted ray is given by

]
: PP :
o ift 2 -jks
§ " Pref///(pl + s)(p2 +s) © ? sy

where Pref is the field at some arbitrary reference point on the ray.

By letting the edge be the reference point for computing P and by

d
realizing that it must remain finite and be proportional to the incident




Edge Diffracted Rays Formed by an Incident Ray Grazing
an Edge.
1

Figure 2.2
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field at the edge, Pi , it follows that

/P .
y ' Lasmelde s ks
Pd = Pi D(d,9") 5 & pc)s e . (2.9)

The geometric factor

/ Pe
G.F. = ?g—:fszjg (2.10)

describes the spreading out of the radiation from the point of diffrac-
tion, where s 1is the distance from the diffracting point to the field
point, and pc is the distance from the edge to the second caustic (or
source). Note that the geometrical spreading factor does not take into
account the geometrical spreading of the incident ray. This latter
spreading must be included with Pi . The caustic distance pc is

obtained from differential geometry (see Reference 15, Appendix I) and

is given by
1 cos ¢ 1 dB
I Ostio - = (211
pc oo sinz 8 sin B d&

where £ 1is the distance along the edge, Oe is the radius of curvature
of the edge, &§ 1is the angle between the diffracted ray and the unit
normal to the edge, and B 1is the angle between the incident ray and the
tangent to the edge. The unit normal is chosen to point away from the
center of curvature of the edge and to lie in the plane of the edge.

It is always instructive to present examples. The geometric

factor, therefore, will be derived for several wave and edge geometries.
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These examples are presented only for the desire to collect as many of

the derived geometries as found in the literature.

2.5.1 Plane Wave or Cylindrical Wave Incident on a Straight Edge

For a plane or cylindrical wave incident on a straight edge,

%% =0 and pe = o , so that pc = o , Equation (2.10) thus becomes

GF. = = (2.12)

s

and the diffracted field is

L B ) cde= (2.13)
Vs

2.5.2 Plane Wave Incident on a Curved Edge

Suppose a plane wave is incident upon an edge with a finite
radius of curvature. Since the edge is curved, the diffracted rays
produced by two neighboring incident rays are not parallel. The pro-
jections back into the body of the scatterer intersect at a distance a
from the point of diffraction. Thus, the wavefront at the diffraction
point in one plane is s (the distance to the field point from the edge)
plus the distance a/cos 6 , where 6 is the angle formed at the
diffracting edge between the radius of curvature and the plane wave ray.

The resulting geometric spreading factor is

C.F. = ~a/cos © . i , (2.14)

s(s - a/cos 6)
//' s cos 6
g(l - —————
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which reduces to the straight edge case as the radius of curvature

becomes infinite.

2.5.3 Spherical Wave Incident on a Straight Edge

A point source near a straight edge will generate an incident
spherical wave for which the caustic distance is the distance from the

source to the diffraction point. The geometrical factor is then simply

e [
G.F. = T s (2.15)

where © 1is the distance from the source to the diffraction point, and

s 1s the distance to the field point. In the case of an incident spher-

ical wave, P,6 = e-Jkp/p , the diffracted field becomes

i

-jks -ik(s + p)
B, = R DN T2 L e T . @.16)
Vs(s + p) Vos(s + p)

2.5.4 Point Source Located on Axis of Symmetry of a Circular
Baffle

Consider one of the circular edges of a right circular cylinder,
as in Figure 2.3, and the diffraction of spherical waves emanating from
a point source lying on the axis of symmetry. A ray from this point
source incident on the circular edge forms a right angle with the
tangent to the edge, making B in Equation (2.11) always equal to m/2 .
The resulting cone of diffracted rays, therefore, degenerates to a plane
disk. The z-axis is a caustic of the diffracted field since all the
disks of diffracted rays produced at the edge of the baffle intersect

the yz-plane along the axis and contribute to the far-zone field in that

direction.
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DIFFRACTED
WAVE
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RAY

SOURCE

Figure 2.3 Diffraction of Spherical Waves from a Point Source on the
Symmetry Axis of a Right Circular Cylinder.
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Since B 1is always 7/2 , the term in Equation (2.11) propor-
tional to dR/d% vanishes, i.e., the angle of incidence is independent
of the location of the point of diffraction. The radius of curvature,
Po is equal to a , the radius of the baffle, and cos § = sin 6 ,
where 0 is defined in Figure 2.3. Hence, the caustic distance is
pc = a/sin 6 . The geometric energy spread factor for a point source at

the center of a circular baffle becomes

i / -

- S & . a = a

G.F. = o : = « (2.17)
c sva/s + sin 6 sv sin 6

When the observer distance is much greater than the radius of curvature,

the last term of Equation (2.17) results.

2.5.5 Point Source on a Circular Baffle

Consider a point source on a circular baffle as shown in Figure
2.4. 1In order to compute the field at point (R,$,0) due to the first-
order diffraction of rays originating from the source at (ps, ¢s) , one
must first solve Fermat's equation to obtain the caustic distance pc
which occurs in the geometrical spreading loss factor. Assuming the
sound velocity to be constant in Equation (2.1), the ray path can be
found by solving for the angle ¢T . The value of ¢T which satisfies
Fermat's equation for the ray path lengths, RP and 2d , will also

satisfy the expression

S
36,

(Qp + Qd) 5%; [%(a cos ¢T - pg cos ¢S)2 + (a sin ¢T -~ Py sin ¢S)

+ {(R sin 6 cos ¢ - a cos ¢T)2 + (R sin 6 sin ¢ - a sin ¢T)2

2 1/
+ 2z} i] = 0 , (2.18)

2}1/2
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P(R, $,6)

fd-DIFFRACTED
RAY PATH
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Figure 2.4 Geometry for Determining the Ray Path of a Point Source
on a Circular Baffle.
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where lp and ld have been written in terms of the distance between

two points,

22 - (x2 = xl)2 + (y2 - yl)2 s (2.19)

Knowing ¢T , the angle B which the incident and diffracted rays make

with the tangent to the edge can be expressed as,

Pq sin(d>T = ¢S)

B = arc cos T s (2.20)

P

where

L, = //osz B 20, a cos(dy - 6_) - (2.21)

As before, the caustic distance Pe is given by

e cos § = 1 ds8
Pe 0o sinz 8 sin B8 df

where the radius of curvature P, =@, cos § = sin ¢T sin 6 ,

g _ 1 d8
" oa dbje,
and
p. cos(d, = ¢_) p. a sin(d, - ¢_)
% & alT S [1 + S 2T S ] s (2'22)
2
P

These relations can be simplified if the field is calculated in
the yz-plane and, additionally, the source is rotated into the yz-plane.
The source is now in the same plane as the field point, hence,

= =lT- = g = -
¢T ¢S 5 giving B 90 and Zp a=-pg - The caustic distance is
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p

1 sin 6 _ s (2.23)

P a af

c P

or
=,

° * % sinb-p ° E-20

P s

Using Equation (2.10), the geometric factor for both the point source
and the receiver lying in the yz-plane can be written as
G.F. = Va . (2.25)
2
s/3+—2(sine+1) -1
s a

which reduces to Equation (2.17) when the source is moved to the axis

of the circular baffle.

2.6 Diffraction Coefficient

It has already been shown that the field of a ray diffracted by
an edge 1is given by the Geometrical Theory of Diffraction (GTD) in the

form

> = ' A o Sy =3 ks
ld PiD(¢,¢ ) / 3ip + &) e 5 (2.26)

The quantity D(¢,4') 1is called the "diffraction coefficient" of the
edge. These coefficients are obtained by comparison with canonical
problems for various boundary conditions. It is the inadequacy of some
diffraction coefficients for complex boundaries that proves to be the
current limit on the usefulness of the GTD. The accuracy of GTD solutions
is obviously limited by that of the canonical problems used to obtain the

diffraction coefficients.
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From the dimensions involved, it follows that the edge diffraction
1/2 -1/2
coefficients must have the dimension (distance) or k . Because i
the wavelength of the incident wave is assumed "small" (which, in this
case, means small in terms of distance of that observation point from !
the edge), the incident wave "sees" only that portion of the edge in the
vicinity of the diffraction point. This implies that scattering at the

edge depends only on the local properties of the field, the wedge and the

wedge geometry.

————

Assuming that only the local properties near the diffraction point
are important, the diffraction coefficient can be determined from the

f solution of the simplest boundary value problem having these local

properties. The appropriate canonical problem in this instance is the
scattering of a plane wave by an infinite wedge of the same mechanical

properties and with the same wedge angle.

2.6.1 Sommerfeld Coefficient

When th- field at the poundary is subject to the Dirichlet (i.e.,
aP

P = Q) or Neumann (i.e., B 0) conditions, the boundary conditions are
referred to as soft and hard, respectively. Sommerfeld was the first to
derive an exact solution of the wave equation for the problem of the
diffraction of light by a wedge, limited by two perfectly reflecting

planes. Using the Geometrical Theory of Diffraction, the diffracted

field for Sommerfeld's (canonical) problem can be written as

e—jks
Py = PD(,9 ) e T (2.27)

which can be interpreted as a cylindrical wave going out from the edge

—
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of the wedge with a characteristic amplitude dependent on ¢ . Keller15

compared his heuristic development to Sommerfeld's exact solution,
asymptotically expanded for large values of kr , and obtained perfect

agreement for

—j“/4 sin L
P T : 1 + !
D(¢, = v T s
nv 2rk sin B |cos e cos(g-:—g—) cos e cos@g¥ti£—)
n n n n
(2.28)

hard

where the {+} refers to the {
= soft

} boundary conditions, the wedge
angle equals (2 - n)m , ¢ is the angle between the plane and the
direction of the observer, ¢' 1is the angle between the plane and the

direction of the incident ray, and B is the acute angle between the

incident ray and the tangent to the edge (see Figures 2.2 and 2.5). From

=)

Equation (2.28), it is observed that for n , such that sin — = 0 , the

=

diffraction coefficient correctly vanishes.
The result is correct provided that

o +0

ks(cos ~ - cos —)" >> 1
n n

It will fail, therefore, in the neighborhood of the shadow boundary,
referred to as the transition region, where
. 4 + 0"
co8 = = (Of —————— (2.29)
n n
Sommerfeld tried to obtain an improved expression by modifying the path

of integration. His results were not satisfactory because the neglected
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terms were not sufficiently small in compariscn to those retained.

Pauli32 subsequently took a different approach based on a transformation
of the integrand without changing the path of integration.

It should be noted that both the incident and reflected fields
are discontinuous at their shadow boundaries. These discontinuities on
the boundary are just compensated by the discontinuity of the diffracted
field so that the total field is continuous. Pauli further confirmed
that the field on the shadow boundary for kr large is equal to one-half
of the incident field. He also concluded that the second term in the
asymptotic series can be neglected for all practical cases.

Pauli's expression for the diffraction coefficient of a wedge,
which is valid both within and outside the transition regions, was
applied to the Geometric Theory of Diffraction by Kouyoumjian and

19

Pathak. This form of D(¢,¢') includes the Fresnel integral function

and is modified by trigonometric substitution to obtain

/4
=3 '
D(,0") = —= { cot(THLL=0y riaat(o - ¢
2n v 21k sin B n

+ cot[ﬂ—:—igﬁ:—gulj F[kLa (¢ - ¢")]

|+

cor (T2 00y Fliwa™(s + 4]

I+

coc[l;%f‘iﬁl FlkLa (6 + ¢")] } : (2.30)

where F(x) denotes the transition function,

o 2
P(x) = 2§/x ¥ J eI gt , (2.31)
X
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in which the principal (positive) branch of the square root /x is
taken, and at(¢ + ¢') 1is simply a measure of the distance from the
shadow boundary,

2N - (6 + ¢")

at(¢ +¢') = 2 cos 3 3 (2.32)

Ni being the integers which most nearly satisfy the equations

2Nt - (¢ +4")

[}
3

and

2N~ (¢ + ¢') = -m (2.33)

It is seen that N+ , N each have two values. For exterior edge-
diffraction problems, N+ =0 or 1 and N =-1,0 or 1. The
distance parameter, L , is obtained by requiring the diffracted fields
to exactly compensate the geometrical acoustics discontinuity across the
shadow boundaries. Expressions were found for several types of illumina-

tion, Reference 19,

s sin2 B for plane~wave incidence
L = Bifi; for cylindrical-wave incidence , (2.34)
ps 2
T sin” B for spherical-wave incidence

where p 1is the radius of the normally incident wave and s is the
perpendicular distance to the field point from the edge.

It can be seen from inspection of Equation (2.31) that the

transition function F(x) includes an integral which can be written in
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terms of the Fresnel integrals C(x) and S(x) (see Reference 1) as,

+
F(klah) = 290aan)}? Jkla /g {[-;— - Sy} ~ j[%- - SOEat 1} .,
(2.35)
where
X
c(x) = cos(g'tz) dt
and o
X
8(x) = sin(} €55 dr - (2.36)
(0]

The Fresnel integrals are easily calculated numerically,43 but care must
be taken by noting that the argument is the square of the lower limit of
the integration in Equation (2.31). The transition function, F(kLai) 5
is a smooth curve and does not oscillate. Its magnitude approaches zero
and its phase approaches 45° for small arguments. For large arguments,
(i.e., x > 10) , F(kLai) approaches unity and its phase approaches 0°.
If the arguments of the four transition functions in Equation (2.30) exceed
10, it follows that they can be replaced by unity, and Equation (2.30)
reduces to Equation (2.28).

The first term in Equation (2.28) represents the diffracted field
term for the incident ray and indicates that the shadow boundary is at
®i =7+ ¢' . The diffracted field generated by the reflected ray is
given by the second term where the shadow boundary is at an angle
o =m-¢' . The diffraction coefficients of Equations (2.28) and

r

(2.30), therefore, can be thought of as a superposition of the individual

incident and reflection diffraction terms. For both the hard and soft
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cases, the magnitude of these rays are equal. They are in phase on the
hard surface and out of phase on the soft surface as shown by the +
sign in front of the reflected ray diffraction term.

A special case results when the incident field is at grazing
incidence where ¢' = 0 . At grazing incidence on a hard surface, the
incident and reflected fields merge, so that one-half the total field
propagating along the face of the wedge toward the edge is the incident
field, and the other half is the reflected field. In this case, the

incident field can be considered as the total field, therefore, only the

incident ray diffraction term of Equation (2.28) can be kept. Alternative-

ly, the incident and reflected rays can be treated separately keeping
their respective diffraction terms. It is the latter concept which will
be used. Equation (2.30) can be analyzed in the same manner, however,
the values remain finite on the shadow boundaries, where the argument of
the transition function is zero and the diffraction term's value is 1/2.
At grazing incidence on a soft surface both Equations (2.28) and
(2.30) wei' 7> to zero. This is not a physical phenomena, but instead
is a result of neglecting any higher order derivatives of the incident
field. Pauli32 derived the first few terms of the asymptotic expansion
and then ignored all but the first term since he was dealing with the
field on a hard surface. Keller15 recognized that for the grazing
incidence case, diffraction associated with the first derivative of the
incident field across the edge will become the leading term in the
asymptotic expansion (see also References 10 and 25). Hence, the
diffracted field for this case is proportional to BPi/Bn , the normal

derivative of the incident field at the edge. Thus, Equation (2.26)
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must be replaced by

api p -jks
Pd T = D'(¢) / sy gt R . (2.37) :

Here, D'($¢) 1is a new diffraction coefficient found by solving a

canonical problem (Karp and Keller, Reference 11) to obtain

THERO T
D'(P) = ¢ Fgv D60
/4 1
Zej sin %-sin %- i
T T 2 T 37 - (2.38)
n 2Tk k sin B(cos ﬁ' ~ cos ﬁ)

Since this diffraction term is dependent on the slope of the incoming
field, it has been referred to as the slope-diffraction term.

The generalized diffraction coefficients defined by Equations
(2.28) and (2.30) were derived for the special case of a hard- or soft-
wedge boundary using techniques employed by Sommerfeld and Keller. Even
though these techniques are not trivial, it should be noted again that

they only apply to the special boundary conditions P = 0 and %% =0 .

2.6.2 Malyuzhinets Coefficient

Malyuzhinets28 has formulated a general method of solution for

scattering in wedge-shaped regions with arbitrary boundary conditions.

The hard, soft, and impedance boundaries are readily solvable by this
method with the aid of special wo(a) functions defined by Malyuzhinets.

The geometry for the edge diffraction coefficient, see Figure 2.5, has

been converted from the original coordinate system by the substitution




The diffraction coefficient, which was derived for large kr and is the
first term of an asympotic expansion using the methods of steepest

descents, is given as

o' -im/4
1 SR o Y@ - ¢ - ) Y@ - ¢ +m)
b | D(¢,¢) S ¢+TT ¢|‘ ¢—TT ¢| )
| V2mk n¥(® - ¢') ‘cos - cOS — €08 —— - cOS —
1 ‘ n n n n
k| (2.41)
with
Y(@) = W¢(a + d + m/2 - 6+) WQ(a -% -7/2 + 9_)
X WQ(a +d - 1/2 + 6+) WQ(a -®+m/2 - 8_) o K2.42)
where
@ o . 7] (-1)™*1
¥y () = il i 1 - ¢ ) (2.43)
(0] ot el 20(2n - 1) + (n/2)(2m - 1)

and the grazing Brewster Angle is given by

f
;t
F,

:
g
:

9, = sin l %5 y (2.44)
1

Z+ is the normal surface impedance for ¢ = 0 , while Z_ is the normal

surface impedance for ¢ = nm . Equations (2.41), (2.42), (2.43), and

(2.44) define the scattering for an incident pressure field with ejwt

3 time-dependence and, hence, give the complex conjugate of the formulation

prepared by Malyuzhinets. Equation (2.41) can be converted to the general
impedance diffraction coefficient by comparison with Equations (2.28) and

(2.30),
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] /4
' -7 ¥ - ¢ -y T (G = 6+
D(b,0") = —= [ 2 {eot | JF[iLa’ (¢ ~ ¢")]
: 2n v 21k sin B e = 49 n

2 cot[“——‘“—%ﬂf—)] FlkLa (¢ + ¢")]}

Y@ -¢+m T-(-~0¢") =l
+ ¥ - 31 {COtP_——-?ﬁT_—_—] Fl[kLa (¢ - ¢')]
- cot[i‘—%*—d"—)—] F[kLa (¢ + ¢')]}] ) (2.45)
t where the Fresnel integrals are given in Equations (2.31) and (2.35) and

the W¢(a) functions are given in Equations (2.42) and (2.43).
Malyuzhinets also published the following form of the impedance
function, rewriting Equation (2.43) for the rational ratio 4¢/m = n/m

with odd and even n , respectively, as

=B cos R/2 (_l)i
@ =1 S ) 2.46)
and
& . (_1)2 B+a/n
Wﬂn/Am(a) = kfl Qﬂl exp| = u cot u du] , (2.47)
where B

The values of n and m are, for example, n=3 and m=1 for a
90° wedge, and n = 19, m= 6 for a 75° wedge.

The techniques used to obtain the diffraction coefficient for an

impedance wedge boundary makes the total field continuous across the

i reflection and shadow boundaries. Since the diffracted field is a

function of the incident field (not the reflected field), the Malyuzhinets
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diffraction coefficient must compensate for an impedance surface at the
reflection boundary; i.e., the reflection coefficient is inherently

built into the diffraction coefficient.

2.6.3 Comparison of Diffraction Coefficients

It is instructive to compare the directivity patterns of the
Sommerfeld and Malyuzhinets diffraction coefficients, Equations (2.30)
and (2.45), respectively. Each of the four terms present in Equation
(2.30) can be found in Equation (2.45) multiplied by an impedance W¢(a)
function. However, in the Malyuzhinets diffraction coefficient, the
terms no longer can be separated into an expression for the incident and
reflected rays. For example, the reflection terms in the Sommerfeld
equation (the third and fourth terms) are found as the second and
fourth terms of the Malyuzhinets equation. The signs of the terms
correspond to a soft baffle, indicating the initial boundary condition
from which Malyuzhinets began his derivation. The WQ(a) functions,
however, reference one term to the impedance of the Z+ surface and the
other to the Z_ surface. It will be seen later that the impedance of
the surface which is in the direction of the field point plays the
dominent role.

The directivity patterns of the Sommerfeld diffraction coefficient
on a 90° wedge, with and without the transition function is shown in
Figure 2.6(a), where the field variable is 6 = ¢' - m/2 . The observer
angle is fixed, while the source angle varies. The curve generated
without using the transition function goes to infinity at the shadow
boundary. The pressure levels at angles larger than + 30° from the

shadow boundary are not affected by the transition function. Equations
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(2.28) and (2.30) were used to calculate the directivity patterns
using a source at grazing incidence on a hard surface located three
wavelengths from a 90° wedge. Notice that the diffracted pressure is
finite at all angles exterior to the wedge. The angles 90° and 180°
bound the shadow zone where only the diffracted field exists. The
diffracted field between -90° and +90° coexists with the incident and
reflected fields and creates a ripple interference effect. The high
amplitude of the diffracted field on a hard surface can cause a
significant ripple.

The edge of a soft surface, on the other hand, produces a
diffraction coefficient which, because of its low level, will create
very little ripple in the insonified region. The directivity pattern
for a grazing ray on the edge of a soft surface is shown in Figure
2.6(b) and was calculated using Equation (2.38) and its modification for
the transition region. Notice again that both curves merge at +30° from
the shadow boundary indicating the beginning of the transition region.
In comparison to the hard surface, the soft surface diffracted field
rapidly diminishes in amplitude away from the shadow boundary.

When ¢' is non-zero, the grazing ray case where both the incident
and reflection shadow boundaries coincide is removed. Shown in Figures
2.7(a) and 2.7(b) are the directivity patterns with a hard and soft
baffle, respectively, for a 30° angle between the plane and the direction
of the incident ray. These curves again show that the transition region
begins at angles +30° from a shadow boundary. The resulting pattern in
Figure 2.7(a) can be thought of as a composite of two patterns each of

which are similar to that in Figure 2.6(a) but shifted by an angle ¢'
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The first pattern, peaking at 6 = 60° is due to the reflected ray and
the second at 6 = 120° is due to the incident ray. The phase of each

diffracted field shifts 180° as it passes through a shadow boundary. The

phase reversal leads to the situation where, between the shadow boundaries

(90° < 6 < 120°), the two diffracted fields are opposite in phase. The
cancellation effect seen in Figure 2.7(a) results. The two diffracted
fields are in phase at all other angles (i.e., 6 < 90° and 6 > 120°).

Just the opposite phase relationships exist for the diffracted
field on a soft baffle, as shown in Figure 2.7(b). The second term in
Equation (2.28) is negative, thus making the incident and reflection
diffracted fields in phase for angles between the shadow boundaries,
and out of phase at all other angles. These phase relationships account
for the shallow dip in the pattern between shadow boundaries and the
rapid decrease in level outside the shadow boundaries.

Shown in Figures 2.8(a) and 2.8(b) are the directivity patterns
of the Sommerfeld hard [Equation (2.30)] and the Keller soft [modified
Equation (2.38)] diffraction coefficients, respectively, for a point
source at several distances from the diffracting edge. As expected, the
closer to the edge that a source is located, the higher the diffracted
field. Figure 2.8 clearly indicates quantitatively the increase in the
diffracted field as the edge is approached. The distance of one-third
wavelength, kp = 2 , appears to give a valid diffracted field. Its
validity will later be checked by comparison with experimental data.

The previous discussion has dealt with only hard or soft surface
impedance conditions. The Malyuzhinets diffraction coefficient defined
by Equation (2.45) allows investigation of surfaces of intermediate

impedances. In order to obtain an understanding of the effect of

e
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changing surface impedance, the directivity patterns for a ¢ = 30°
were plotted in Figure 2.9 as a function of the surface impedance ratio

Z/pc . Both surfaces of the wedge had the same impedance, i.e., Z, = Z

e _ .

Notice that the level of the incidence ray shadow boundary remains
constant as the impedance is varied from soft to hard. Also, the level
of the diffraction field present in the shadow region continuously
increases as the impedance changes from soft to hard. The sharp~cornered
pattern is that given by the hard Sommerfeld diffraction coefficient in
Figure 2.7(a). The pattern for the lowest surface impedance which was
plotted is equivalent to the pattern produced by the soft diffraction
coefficient in Figure 2.7(b).

The amplitude at the reflected ray shadow boundary in Figure 2.9
goes through a minimum where the normal component of the surface
impedance matches the impedance of the sound propagating medium. In
water, which is the propagating medium under investigation, the
impedance is pc = 1.5 x 106 MKS Rayls . It is interesting to observe
that even though the diffracted field changes significantly with surface
impedance in the illuminated region, 6 < 120° , the diffracted field in
the shadow region does not. Another indication that the diffracted
field in the shadow region acts almost independently of the diffracted
field in the illuminated region is that when the surface impedances Z+
and Z_ are different, the shadow region is controlled by Z_ and the
illuminated region by Z+ . That is, the diffracted field in the shadow
region for a given impedance, Z_ only undergoes a minor change when

the impedance of the other surface, 2 is changed. For all practical

+

purposes, then, Figure 2.9 provides the pattern information for all cases

of Z+ and Z_  impedances.




44

changing surface impedance, the directivity patterns for a ¢ = 30°
were plotted in Figure 2.9 as a function of the surface impedance ratio

Z/pc . Both surfaces of the wedge had the same impedance, i.e., Z, = Z

+ .

Notice that the level of the incidence ray shadow boundary remains
constant as the impedance is varied from soft to hard. Also, the level
of the diffraction field present in the shadow region continuously
increases as the impedance changes from soft to hard. The sharp-cornered
pattern is that given by the hard Sommerfeld diffraction coefficient in
Figure 2.7(a). The pattern for the lowest surface impedance which was
plotted is equivalent to the pattern produced by the soft diffraction
coefficient in Figure 2.7(b).

The amplitude at the reflected ray shadow boundary in Figure 2.9
goes through a minimum where the normal component of the surface
impedance matches the impedance of the sound propagating medium. In
water, which is the propagating medium under investigation, the
impedance is pc = 1.5 x 106 MKS Rayls . It is interesting to observe
that even though the diffracted field changes significantly with surface
impedance in the illuminated region, 60 < 120° , the diffracted field in
the shadow region does not. Another indication that the diffracted
field in the shadow region acts almost independently of the diffracted
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+ bl

purposes, then, Figure 2.9 provides the pattern information for all cases

of Z+ and Z_ impedances.
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In Figure 2.10, the change in the diffracted field as a function
of the observation angle ¢ 1is presented. The surface impedance ratio
is Z/pc = 1.5 . As ¢ approaches an impedance surface, the diffracted
field goes to zero. Continuity of the total field is maintained by the

diffracted field amplitude between the shadow boundaries.

2.7 Reflection from an Impedance Wedge

When a progressive plane wave in a fluid medium impinges on the

boundary of a second medium, a reflected wave is generated in the first
medium. The ratio of the pressure amplitude of the reflected wave to
that of the incident wave depends on the characteristic impedances of the
two media and on the angle of the incident wave. The amplitude of the

reflected wave can be represented by the complex reflection factor

_ (Z/pc) cos £ -1
R, ™ QUlocl et =1 ° (2.49)

where § 1is the angle between the direction of propagation and the
normal to the reflecting surface. Oblique incidence, therefore, reduces
the acoustic impedance by a factor of cos § . At grazing incidence, a
finite impedance surface behaves as a soft surface. In addition, the

surface impedance of the boundary usually depends on the angle of

incidence. This dependency must also be taken into account when applying
the reflection coefficient in an actual problem.

There are many references which deal with the reflection of sound

31,39

from surfaces. However, there seems to be no analysis in the

literature concerning the attenuation of a wave front close to or on an
impedance surface as a function of distance from the source. This is an

area which needs further research.
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The analysis can be extended to the case of spherical waves,
where a point source and receiver are located above an impedance surface
as shown in Figure 2.11. An interference phenomena is produced between
the sound reflected from the impedance surface and the sound coming
directly from the source without reflection. Analysis of this effect
can best be done using a source-image approach.

Let a point source be located a distance, £ , above an impedance
surface. The direct path length from the source to the receiver is b ,
and the path length of the reflected ray is equivalent to the distance
from the image source to the receiver, a . By first referencing the
coordinate system to the surface and then to the edge as in Figure 2.11,

the distances can be written as follows:

£ e (4 & 85 - 3dn cas(d + v (2.50)
. w2 = ‘1[£E*i;££igliéi (2.51)
¢ = m/2 cos 5rd ] [ -
a = [r2 + 22 ~ 2rl cos(m ~ |¢|)]1/2 (2.52)
and
b o e 2R < DEk cos $1V (2.53)

The reflection coefficient given in Equation (2.49) can be used where
the angle of reflection is given by

2 2

2
-1, 24" +a -r 1. (2.54)

E = cos [ 7la

The total pressure field at the receiver is simply the sum of the
pressures resulting from the direct ray and the reflected ray, the

latter being modified in amplitude and phase by a reflection coefficient,




pC

RECEIVER

Z

Figure 2.11

FE T rrrrrrrrier

Reflection from an Impedance Wedge.

49




e—jkb e—jka
P(total) = z + Rg s

(2.55)

The source-image approach uses a ray analysis concept which shculd be

compatible with the ray concept of the Geometric Theory of Diffraction.

2.8 Attenuation of Progressive Waves on an Impedance Surface

The same analysis as used in Section 2.7 can be used to determine
the attenuation of a progressive wave as it propagates along an impedance
surface. Assume that both the source and receiver are the same distance
£ from the surface, where £ is a small portion of a wavelength, and

are separated by a distance b . The distance from the image source to

the receiver is a =//4£2 + b2

, and the reflection angle is sin & = b/a .
Using Equation (2.55) for various values of b and Z/pc , curves can

be generated which will define the signal attenuation on an impedance
surface. In the limits, the far field attenuation is 6 dB and 12 dB per

doubling of distance for the rigid and soft surfaces, respectively. An

impedance surface should have an intermediate value.

2.9 Finite Size of Receiver

Ideally, an infinitely small receiver would measure twice the
pressure of an incident wave at a rigid surface and would measure zero
at a soft surface. However, an actual receiver, small though it may be,
has a finite size.

Depending upon the problem, it is sometimes easier to utilize the
reciprocity principle and exchange the role of the source and receiver.
Let us now place the receiver near a reflecting surface. The effect of

the finite size of the receiver can be ascertained for the case of a

plane wave incident normal to the surface. The receiver is a cylindrical
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piezoelectric ceramic transducer over which we wish to obtain the
average pressure; hence, we must perform an integration over the probe
surface of the form,

IO Pi d(area)

P = :
A I d(area)
o

(2.56)

where Pi is the incident pressure, and 0 denotes the surface. The
problem of a plane wave incident on a cylinder can be treated as a two-
dimensional problem with sufficiently accurate results. Since the probe

cross-sectional area is a circle of a radius a , see Figure 2.12, we

thus have

& i 1 2m
Pave = Sl e A e J Pi a do - (2.57)
a db b
o
For the case of a soft surface, the incident pressure can normally be
written as

Pi = Pmax sin(kx) , (2.58)

where x = r + a cos 6 for the surface of the receiver. Thus,

A P ™
1 max
Pave(soft) = 5}E-Jo Pmax sin(kx) a d® = - Jo sin[kr + ka cos 6] db
(2.59)
and
1 (7
Pave(soft) = Pmax {(sin kr) ;’fo cos(ka cos 0) d6 +

(cos kr)

T
I sin(ka cos 6) d6 } . (2.60)
o




Figure 2.12 Circular Cross-Sectional Area of a Receiver Near the
Baffle Surface.




Integrating this, we obtain29

Pave(soft) = Pmax sin kr Jo(ka) 5 (2.61)

For the case of a rigid surface,

Pi = Pmax cos (kx) (2.62)
and
Pmax i
Pave(rigid) = = ) cos[kr + ka cos 0] d®
P - m
= ﬁr [cos kr cos(ka cos 6)
o
- sin kr sin(ka cos 0)] d6 . (2.63)
Hence,
Pave(rigid) = Pmax cos kr Jo(ka) s (2.64)

Figure 2.13 presents a plot of Equations (2.61) and (2.64) for the case
of the receiver touching the surface (r = a) . The level of Pmax is
twice the level of the incident pressure which, in the absence of the

baffle, is the free-field pressure.

2.10 Transmission Properties of a Baffle

The objective of this research is to study the diffraction effects
caused by finite baffles. If the transmission properties of the baffle
are not controlled or well known, then analysis of the experimental

results may become difficult.
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Figure 2.13 Pressure Response of a Receiver of Radius a Adjacent
to a Soft and Rigid Surface.
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The typical three-medium problem (Reference 31) for the trans-
mission of sound is presented in Figure 2.14 for a soft surface where
the second medium is air. The ratio of the transmitted signal amplitude

A to the incident signal amplitude A, Iis,

3 1
22' = ‘23 72 : 7 .3 7 ik
1 1 [(1+ m,m,)" cos (kzh) + (m1 + m2) sin (kzh)]
where m1 and m2 are the impedance ratios,
p,yC p,C
m = - S B m, = = (2.66)
P35y Py

and k 1is the wave number, p 1is the density, ¢ 1is the sound velocity
and h 1is the thickness of Medium IT.

If Medium I and Medium III are the same, such as water, a quantity
called insertion loss is frequently used. Insertion loss is defined as
the reduction of the signal, in decibels, caused by inserting the material
between a sound source and a receiver in the absence of diffraction and
refraction effects. It is given by

A1
Insertion Loss = 20 log (K_) . (2.67)
3
Using Equations (2.67) and (2.65), it can readily be seen that for a
plane wave normally incident on a plate immersed in water, the theoretical

insertion loss becomes,

2.2

Insertion Loss = 10 log 33;1L%L)—-s1n2 kyh + coss khl ., (2.68)
4m

2




70

56

MEDIUMI MEDIUMI MEDIUMII

WATER AIR WATER

P2:C3
X=0 X

P +C P3.C3

"
¥

40

INSERTION LOSS (dB)

30}

20

60—

50}

LA L LS S B B B

PR AR T RN NN

Figure 2.14

10 100
FREQUENCY (kHz)

Insertion Loss Properties for a 1/8" Thick Layer of Air.




57

where m = pc/pwcw , which is the ratio of the characteristic impedance
pc of the material to the characteristic impedance of water
(pwcw al 25 x 106 MKS Rayls) . Equation (2.68) remains unchanged if
1/m is substituted for m . Physically, this means a high impedance
material can have the same insertion loss as a low impedance material
where m for one material is the reciprocal of m for the other material,
kh being the same for each case. The insertion loss becomes zero for a
nonabsorbing material when the thickness is near a multiple of a half
wavelength (kh = 0, m, etc.) or when a perfect impedance match exists
(m = 1) . The maximum insertion loss occurs when the thickness is an
odd multiple of a quarter wavelength (kh = w/2, 3m/2, etc.)

A soft material such as water or cell-tite neoprene has a
characteristic impedance of pc = 415 MKS Rayls . The maximum insertion

loss for a water-air-water interface, where m = 2.8 x 10-4 , is

Insertion Loss(max) = 65 dB(air) |, (2.69)

and, for an 1/8" thick layer of air, occurs at a frequency of

f(peak) = ES%%El = 32.7 kHz(1/8" air layer) . (2.70)
The insertion loss as a function of frequency for a 1/8" thick layer of
air placed in water is plotted in Figure 2.14. The maximum insertion

loss depends only on the impedance ratio and not on the material thick-

ness. The frequency at which maximum and minimum insertion loss occurs

depends only on the thickness.
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A good rigid baffle should have an impedance ratio equal to the
reciprocal of the soft baffle. It is not possible to achieve a large
impedance ratio in water with a high pc material because of the
relatively high pc of water. Steel has one of the highest values of
pc = 39 x 106 MKS Rayls of all the common materials and can readily
be used as a baffle. Tungsten has an impedance about twice that of
steel but is expensive, more than twice as heavy, and only increases
the insertion loss by 6 dB. The impedance mismatch between steel and
air is 104 times higher than that for steel and water. It is for this
reason that most of the experimental work on rigid baffles has been done

in an air environment.

The maximum obtainable insertion loss for a water-steel-water

interface where m = 26 is
Insertion Loss(max) = 22 dB(steel) . (2. 71L)

Insertion loss as a function of frequency and for several thicknesses of
steel in water is plotted in Figure 2.15. Although the insertion loss
appears adequate for experimental purposes, the thickness required for

low frequencies may make the baffle too heavy for practical considera-

tions.

2+11 Baffle Vibration

Another effect which cannot be overlooked is that of plate
vibration on the nearfield response of the hydrophone. It is possible
that the hydrophone response could be affected by the flexural or

bending waves set up in the baffle by acoustic interaction with the
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incident sound wave. A rigid baffle is much more difficult to construct
than a soft baffle since, in addition to maximizing the insertion loss,
the vibrational modes of the structure must be eliminated or damped in
the frequency range of interest in the experiments. If the baffle is
allowed to vibrate at or near the test frequencies, then the hydrophone
could be monitoring both the diffraction field and the near-field
radiation of the structure and invalidate the tests.

If the plate is homogeneous and the vibration pattern a natural
one (in contrast to a forced pattern that results if the plate is
clamped along various lines), the distance between the nodal lines and
also the bending wave number are functions of the frequency. The bending

wave velocity is

& = O ‘o s (2.72)

where
4 AE h2 c 2 h2
a = - Eié (2.73)
12p(1 - V)
and
" / 2 ” 1
Cp AE/p(l v) = S ——-——1 . \)2 3 (2.74)

The quantity cp is the sound velocity for longitudinal waves in a thin
plate, h 1is the thickness of the plate, Vv 1is the Poisson contraction,
p 1is the density, and AE is Young's modulus.

For a steel plate, we have v = 0.28 and S ™ 5050 m/sec

which gives a plate velocity of cp = 5260 m/sec . For example, a

1/2-inch (1.27 x 10—2m) thick steel plate has

o = (cp2 w21yt = 4039 (2.75)
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and a bending wavelength of

UJO
Q
N
N
=3

= o /=~ (2.76)

o
o)
M
La}

where AB = 3.54" , 3.06" , and 2.50" at the frequencies 15, 20, and 30
kHz, respectively. It is evident that to avoid bending resonance in the
frequency range of the measurements, the baffle must be constructed as

a mosaic of small steel squares, e.g., 2" on a side, with a compliant
bond between each square.

) :

A square which has edges of % = 2" 1long has a resonance frequency
22
£f = c /8 = 2ma”/R" = 47 kHz . (2.77)
If one considers this square as a half-wave resonator, then f = Jr/4 =

11.7 kHz . The experimental frequencies lie between these two resonance

frequencies and, hence, a bending resonance will not affect the response

characteristics of the hydrophone.

2.12 Diffraction from a Single-Edge Impedance Wedge

An example diffraction problem will now be illustrated which
combines the theory presented in Sections 2.5, 2.6, and 2.7. Assume the
; diffraction wedge has a single 90° interior angle and semi-infinite

surfaces which can have any impedance. Also, assume both surfaces have
the same impedance. The geometry for ray path analysis will be the same
: as presented in Section 2.7 and Figure 2.11, with the receiver near the

wedge surface and the source rotated about the edge.
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In order to present a practical problem the normal distance from
the point source to the surface will be taken to be £ = 0.35" which is
the approximate separation distance for the acoustic center of an LC-32
transducer in contact with the surface. With a wavelength of 3"

(f = 20 kHz), the source-to-edge distance is 4 wavelengths (12") and the
receiver-to~edge distance is 10 wavelengths (30"). The receiver rotates
from 0 = -90° to the © = 180° surface. The following equations are

used; the direct and reflected pressure field is

) J g +R o B < & < & (2.78)
o b & — r )
and
kb
A ¢, < = 9 (2.79)
B B £ % % 2, (2.80)

and the diffracted field is:

- ] CRR [ SR "ij o o
P, = B 0aY) foels e 0° < ¢ < 270°

(2.81)

where ¢i and ¢r are the angles of the incident and reflected shadow
boundaries and b,a are defined in Figure 2.11.

The total pressure field is given by,

(2.82)
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At the reflected ray shadow boundary ¢ = ¢r 5
e~jkb e-jka
L) = 5 R T (2.83)
and at the incident ray shadow boundary ¢ = ¢i »
e-jkb
Pt(¢i) = T 3 (2.84)
| The field incident at the diffraction point is,
o Jkp
Pi = 5 ’ (2.85)

where p = /22 + d2 . Equation (2.30) or (2.45) can be used for the
%ﬁé diffraction coefficient.

By analyzing Figures 2.6 to 2.10 an understanding can be obtained
of how the diffraction coefficient varies with impedance, angle of
incidence, and distance (as a function of frequency) from the source to
the diffracting point. A similar analysis of the single-edge diffraction
problem will give insight to the more complex multi-edge problems and to
the experimental data. The change in the directivity pattern at 20 kHz
as a function of surface impedance is plotted in Figure 2.16, where
P/Po is the ratio of the received pressure to the free field pressure
based on the separation distance when the source is directly above the
receiver. When the impedance ratio is low (Z/pc = 0.1) , the surface

is soft and a smooth directivity pattern results. Because of the soft

surface, the far-field pressure is proportional to cos 6 and has a
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Figure 2.16 Calculated Directivity Patterns as a Function of Surface
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highly attenuated diffracted field. Hence, no ripples are present in

the insonified regions. The angle of incidence from the source to the
diffraction point, for this example, is about 3°. From Figure 2.10, it
can.be seen that the diffracted field for a small angle of incidence and
a low impedance surface has a high, flat peak between the shadow boundary
angles. This peak exactly compensates for the high incident field level
[Equation (2.79)], as expected, and the continuous curves shown in Figure
2.16 result.

As the surface impedance increases, the level of the diffracted
field in the shadow region increases and an interference effect causing
ripples becomes evident in the insonified region. Figure 2.17 shows the
same impedance dependence for a directivity pattern at 60 kHz. The
drastic change from the relatively smooth soft impedance pattern to the
rigid impedance pattern is caused by the source being positioned at a
point whose distance from the surface is a significant fraction of a
wavelength (0.35)) . In addition to the large interference lobes
present at a high impedance, ripples are generated by the diffracted
field. Note that these ripples are more closely spaced than at 20 kHz.
The source-to-edge distance is a larger number of wavelengths at the
higher frequency, hence, the larger number of ripples.

In Figure 2.8(a), it was shown that the diffracted field for a
rigid surface increases as the distance to the edge decreases. Figure

| % shows the same dependence for a source close to the surface of a
\ woedge. As the source moves closer to the edge, the number of

rease and the level of the field in the shadow region increases.

‘vt fleld on a soft surface wedge increases in a similar
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manner as shown in Figure 2.19. Compare Figures 2.8(b) and 2.19 to see
the contribution of the diffracted field.

Both Figures 2.18 and 2.19 were calculated using the Sommerfeld
.diéfr;;tiog.ééé%fiéi;nt.fo; a finite angle of incidence (¢' # 0°)
Figures 2.16 and 2.17 were calculated using the Malyuzhinets diffraction
coefficient. Whenever any case of mixed boundary conditions is present,
i.e., one surface impedance differs from the other, then the Malyuzhinets
diffraction coefficient must be used. This is evident in Figure 2.20(a)
where Z+ is soft and Z_ 1is hard. Even though the Sommerfeld
coefficient is valid for either soft or hard wedges, it obviously gives
a bad result for a mixed soft/hard wedge. The Malyuzhinets coefficient
gives the expected diffraction pattern. Figure 2.20(b) shows the
directivity pattern of Z+ hard and Z_ soft, opposite of the case
used in Figure 2.20(a). Again, only the Malyuzhinets coefficient
produces a realistic directivity pattern. Notice that in the mixed
surface impedance problem, the pattern in the insonified region has a
smooth dipole-like (i.e., cos 6) response when Z+ is soft, and a
ripple effect when Z+ is hard, as expected when both surfaces of the
wedge have the same impedance, e.g., Figure 2.16. The pattern response
in the insonified region, therefore, has only a weak dependence on the

impedance, Z_ , of the other wedge surface. Another fact to note is

that the diffracted field is lower in Figure 2.20(a) than in (b), even

though the soft surface diffraction coefficient is used, implying that
the surface on which the source is located has the predominant influence

on the directivity pattern.
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2.13 Multi-Edge Diffraction

Consider now a second diffraction problem which concerns the
far-field directivity patterns of a point source on a two-dimensional
baffle. A two-dimensional baffle can be used as a first approximation
for any baffle in which the radius of curvature at the diffraction point
is large compared to the wavelength. For illustrative purposes, assume
a rectangular rigid baffle with the coordinate system referenced to the
center of the upper surface. The distance across the baffle is £ and
the height of the baffle is H . With a source on the surface of a rigid
baffle and the receiver at a large distance from the surface, the direct

field will be,

P_(6) = ga e SEE —9g* < & < 90°
%Jéi and
s P (o) - okt sin 6 B = A
6 = 90° , (2.86) ‘

where r 1is the distance from the center to the source.

The diffracted field from the right edge is

Pa(9) = Pik) D_(¢,0) Vo g DVELAL D -90° < 6 < 180°

6 = 06 +90° |, (2.87)

jkp
where the incident field is PiR) = 97;—

5 Ds(¢,p) is the Sommerfeld

diffraction coefficient, and p 1is the distance from the source to the

right edge. At the left edge, the diffracted field is
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| P () = PiL) D (4,p") Sor o) EI2) in B ~180° < 8 < 90* ,

¢ = 90° -6 |, (2.88)

o - . ee . - » -

o e (L) ejkD'
where the incident field is Pi i and p' 1is the distance

from the source to the left edge. The right-back edge generates a far-

field diffraction function

(@ = P p g0+ m/pra 2O+ B d)
4 >0,
1 o < -90°
and
¢ =8y (2.89)

the incident field at the diffraction edge being,

pRB) L p(®) p (270,0) L& I e

At the left-back edge, the diffracted field is

PLB(¢) ~ PiLB) D (¢,p' + H) j?;‘frji ejk(l/Z sin 6 -~ H cos 0) . (2.91)
s
6 < 0° ,
6 > 90°
and
¢=-6’

the incident field at the diffraction edge being,




- e . .-

B - pfM b (270,0") ! eI (2.92)
8 V(' +H) H

Using the above equations, directivity patterns were computed for
different source positions on a rigld baffle. These patterns are
presented in Figure 2.21 for a baffle 18" wide and 14" in height. The
frequency (20 kHz) has a wavelength of 3" and the patterns are plotted
for the source placed at every one-inch position across the baffle. The
presence of diffraction lobes in the shadow region is in contrast to the
smooth curves as seen in the single edge diffraction patterns of Figure
2.18. Another significant observation is the degree of asymmetry present
in the pattern when the source is located -8" from the center, i.e., one-
third wavelength from the left edge of the baffle. The presence of an
asymmetric pattern, such as this, for a source on a finite baffle was one
of the motivating factors for this study. Similarities present in
Figures 2.21 and 2.18 are the increasing level of the diffracted field
as the source approaches one edge, and the ripple effect present in the
insonified region. Superposition of the diffracted fields from both the
right and left edges with the direct field results in the appearance of
a complex ripple effect.

A limitation of the example just presented is that the Sommerfeld
diffraction coefficient must be used. When an impedance surface or a
mixed hard and soft wedge is considered, the Malyuzhinets diffraction
coefficient must be used. But the Malyuzhinets coefficient for a finite
impedance is equal to zero on the back surface, thus eliminating any
contribution from the back diffraction edges. To ascertain whether a

loss of information occurs by neglecting the back diffraction edge, i.e.,
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where H goes to infinity, the far-field directivity patterns were
plotted in Figure 2.22(a) and (b) for the source positioned in the
center of the baffle and one inch from the right edge, respectively.
Neglecting the secondary diffraction at the edges in the shadow
region does not appear to result in a loss of information. As expected,
the directivity patterns obtained when H goes to infinity, now called
the two~edge problem, closely match the four-edge problem in the
insonified region and give an average level in the shadow region. The
mismatch in levels at -180° and +180° in Figure 2.22(b), when averaged,
provide a good match to the four-edge problem. Two advantages result
from using a two diffraction edge analysis for comparison with experi-
mentally obtained patterns. The smooth curve in the diffraction lobe
region can be readily observed, making the theory-to-experiment
comparisons easier. Secondly, finite impedance surfaces can be introduced
by substituting the Malyuzhinets diffraction coefficient in place of the
Sommerfeld coefficient. All comparisons of theoretical and experimental

directivity patterns will be performed with the two diffraction edge

model using the Malyuzhinets diffraction coefficient.




CHAPTER III

EXPERIMENTAL SETUP

3.1 Hydrophone and Projector

The hydrophones used in the experiments were commercially

available Atlantic Research LC-10 and an LC-32 transducer. They have

small cylindrical lead zirconate titanate ceramics with diameters of

0.38" and 0.75" and sensitivities of -208 dB and -204 dB re 1 volt/u

Pascal, respectively. Smaller hydrophones are available but require a

preamplifier-cable driver which is mounted in a large housing. The

large housing would possibly interfere with the diffraction field to a

greater extent than the slightly larger LC-10 and LC-32. The LC-10 was

used for all measurements on the finite "rigid" and soft baffles, while

the LC-32 was used on the impedance wedge baffle where size was less

important and a higher sensitivity was more important. ;
A directional high efficiency F-33 projector was utilized as the z

far field source for all tests involving the finite rigid and soft

baffles. Another LC-32, a reciprocal transducer, was used as a projector

for tests with the impedance wedge since an omnidirectional source was

required.

3.2 Impedance Wedge Baffle

The impedance wedge baffle was used for diffraction measurements
in order to obtain a set of data for comparison with the field predicted

by diffraction theory. The dimensions of the wedge baffle were such that
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a single edge could be isolated, i.e., the direct and diffracted acoustic

signal relating to one edge could be isolated from all other reflection

and diffraction paths. The only care taken with the baffle was to prevent

transmission through the material. An arbitrary impedance surface with
dimensions such that one edge at a time could be analyzed was all that

was required.

3.2.1 Material

The baffle was constructed out of 3/16" steel lined with a 1/8"
layer of cell-tite neoprene. Cell-tite neoprene is a closed cell neoprene
rubber which contains nitrogen. Nitrogen has about the same impedance
properties as air. From Section 2.10, it can be seen that an adequate
insertion loss was present to prevent transmitted signals from inter-

fering with the tests.

3.2.2 Description

Two configurations of the baffle are shown in Figure 3.1. As can
be seen by inspection, it was a closed triangular shaped baffle with two
75° sharp wedges and the third a 30° cylindrical wedge of 6" radius. The
centers of rotation were located at the edge of the 75° wedge, as shown in
Figure 3.1(a), and at the center of curvature of the cylindrical wedge.
The source was positioned on a boom at a distance of 30" from the center
of rotation. The receiver was located 12" from the center of rotation

at an angle such that it just touched the baffle surface. The receiver

remained fixed while the source was rotated about the axis.

i > . - s T T—
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3.3 Finite Rigid and Soft Baffles

The first considerations in designing finite baffles were to
select the materials to be used for the rigid and soft surfaces and to

avoid resonances in the frequency range of interest.

3.3.1 Material

The analysis in Section 2.10 indicates that steel or tungsten
should be used for the rigid baffle. Considering the weight handling
capabilities of the training mechanisms used to rotate the baffles it was
determined that tungsten was too heavy. The maximum insertion loss for
steel (22 dB) appeared adequate for experimental purposes; however, the
required thickness at 20 kHz (mid-frequency) to obtain maximum insertion
loss was 2-1/4 inches, which was far too massive for the transducer
training equipment to handle. Consequently, a thickness of 1/2 inch was
selected so that the baffle remained thin compared to a wavelength while
still providing sufficient insertion loss. Indeed, the insertion loss
was shown to be sufficient by considering the pattern data of a rigid
disk. It will be shown that in the case of the latter, the diffraction
lobe level rises as the frequency increases, whereas insertion loss theory

predicts a lowering of the diffraction lobes with increasing frequency.

3.3.2 Description

To avoid bending resonance in the frequency range of the measure-
ments, the baffle was constructed as a nine row by nine column mosaic of
2" x 2" x 1/2" steel blocks which were machined on all four edges. From
Section 2.11, it can be seen that the nominal experimental frequencies of
15 kHz, 20 kHz, and 30 kHz lie between the first two resonances. There-

fore, bending mode resonances did not affect the response characteristics
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of the hydrophone. The steel squares were bonded together with pliobond,
a rubber-based cement, which produced a good damping quality and also
provided a degree of isolation between squares. This bond is quite
compliant, however, which means that if the baffle mass had been too
great (implying a thick plate), plate stretching could have occurred,
opening gaps and causing the baffle to buckle during handling.

The probe was positioned on the square baffle as shown in Figure
3.2 by means of a small brass mounting unit which was held by a set screw
to a long brass rod. The brass rod was, in turn, held by set screws into
two stand-off posts which are loosely screwed into the steel blocks.
This allowed the probe to be shifted easily to any other position
relative to the baffle. These loose and numerous joints effectively
isolated the probe from any possible structure~borne vibration with
frequencies near those used during the experiments. This positioning
arrangement was maintained throughout the entire experimental program.

The first soft baffle was rectangular, 48 inches long and 15 inches
wide, with a thick cover of cell-tite neoprene into which the probe was
'buried'. All subsequent soft baffles consisted of the comparable rigid
baffle with an 1/8-inch layer of cell-tite neoprene attached to its
surfaces. This procedure was justified when it was determined that the

directivity patterns of the probe were essentially identical whether it

was placed into the neoprene or rested on its surface.

A disk was constructed by inscribing the largest possible circle
within the square baffle. This produces both the rigid disk and, when
covered with cell-tite neoprene, the soft disk. The finite cylinder was

formed by attaching the disk to a massive cylindrical shell. The
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cylinder was actually an internally braced frustrum of a cone with
diameters of 18 inches and 21 inches and a massive back plate. The
mounted disk, now an end cap, was isolated from the shell by a 1/4 inch
soft rubber diaphragm backed by an internally mounted wooden disc. The
addition of a massive back plate sealed the air cavity. It was not
expected that the shell, via coupling from the incident acoustic waves,
would contribute to the sound energy received by the measuring hydrophone.
Table 3.1 lists the baffle geometries tested and their surface

impedances.

3.4 Scattering Bars and Rings

The scattering bars and rings were made of a high pc material
(steel) and a low pc material (polystyrene). Polystyrene, a closed cell
foam, was ideal for a soft barrier exposed to water, since it retained
its formed dimensions, was easy to work with and did not flex as the
baffle was rotated underwater. Both materials used as barriers had
dimensions of 1/2 inch high and 1/4 inch wide and were positioned
around the circumference of the rigid circular and square baffles as in
Figure 3.3. The soft baffle was not tested with a barrier because of its

already high attenuation at the baffle edge.




TABLE 3.1

LIST OF BAFFLE GEOMETRIES
AND THEIR SURFACE IMPEDANCES

GEOMETRY SURFACE IMPEDANCE

disk A. rigid
(18" diameter) B. soft

square A. rigid
(18" on a side) B. soft
rigid cylinder A. rigid end cap
(18" diameter) B. soft end cap
(15" long)
soft cylinder A. rigid end cap
(18" diameter) B. soft end cap

(15" long)

84
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CHAPTER IV

EXPERIMENTAL PROCEDURE

.1 Test Facilities

The experimental work was conducted using the Applied Research
Laboratory's water-filled anechoic tank facility which has been in
operation since September 1968. This concrete tank (26 ft. long, 17.5 ft.
wide, and 18 ft. deep) has an anechoic wall liner of "Saper T" (a
Goodrich acoustic liner) to reduce the reflection and reverberation
levels, thus avoiding interference in each repeated pulsed signal. The
tank itself is vibration-isolated from surrounding structures, being
mounted on 3-inch-thick Korfund "Vibracork." The average water tempera-
ture of the tank is approximately 22°C and the depth of the projector
and baffle probe were normally set at 9 ft.

For beam pattern or directivity measurements of the finite baffles
the test hydrophone and baffle were mounted on a telescoping positiomer
and rotated in the incident acoustic field. The hydrophone and baffle
were oriented to achieve coincidence between the acoustic axis of the
hydrophone and the axis of rotation of the positioner. Experiments on
the impedance wedge baffle required a different rotating mechanism which

would rotate the source about the baffle.

4.2 Transmission Measuring System

Experiments in the restricted boundaries of an underwater test

tank are made in the presence of reflections and reverberations. Energy




87

arriving at the hydrophone and baffle under test consists of the desired
direct path energy plus undesired signals from extraneous reflecting
objects. The system used to gather data discriminated between desired
and extraneous signals by using pulse modulation and selective time
gating. The receiver signal gate was positioned in time so that only a
selected portion of the direct path propagation was passed and recorded
without distortion. In the absence of the gating pulse, the input and
output were isolated by more than 80 dB.

Signal control and recording was performed by the Scientific-Atlanta
Automatic Transmission Measuring System shown in Figure 4.1. A pulse
timing generator at the heart of the system controled pulse widths,
repetition rates, and sampling times. The oscillator output was directed
into the Transmit Signal Gate which formed a pulsed transmit signal. The
E-I Normalizer maintained a constant voltage or current level on the
projector.

The received signal was first preamplified and then filtered to
remove unwanted noise. By means of the Receiver Signal Gate and Peak
Detector network any portion of the receive signal could be isolated,
measured, and recorded on the Rectangular recorder. A polar recorder
was available but was not used for two reasons. First, the recorded
directivity patterns would have had to be adjusted in level to give
P/P0 , the pressure ratio of field obtained with the baffle present to
the free-field pressure. Polar plots cannot be easily adjusted in level
after being recorded. Moreover, better resolution of the diffraction

lobes are obtained.
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4.3 Experimental Technique and Procedure

The square and disk baffles were mounted on a movable carriage,
as shown in Figure 3.2, which allowed the baffle to be moved in a trans-
verse direction from the axis of rotation. The hydrophone was first
mounted on the baffle a specific distance from the baffle edge. The
entire baffle-probe unit was then shifted to align the acoustic center
of the hydrophone with the axis of rotation. The cylindrical baffle,
however, was too massive for the procedure to be followed. The axis of

rotation was therefore positioned close to the baffle face giving a

maximum radius of 10 inches to the hydrophone. Since the projector was
positioned at a distance of nine feet, for these experiments, the error in
angle was ~6° for incident angles of 0° and 180°. No error occurred at
90°. It was felt that analytical difficulties should not occur if this
angle error is kept in mind when comparisons are made.

When the probe was removed from the axis of rotation, as in all
of the finite cylinder tests, the projector-hydrophone distance varied
as the angle of incidence changed; hence, the receive pulse arrival time
also varied. The gate which was set to measure a certain portion of the
receive pulse remained fixed in time since it was set on the instrument
panel. Consequently, the total effect observed was that the gate position
on the pulse envelope shifted along the pulse envelope as the angle of
incidence changed. Since the analyzing equipment recorded the peak value
of the gated signal, care was exercised so that at no time did the gate
include the pulse cutoff transient. In order to compensate for the
different arrival times of the received pulse, the gate had to be adjusted

in time as the baffle was rotated.




Prior to filtering, the waveshape was distorted by a high frequency

harmonic (approximately 100 kHz) whose source was the projector. The
source of this harmonic was established by observing that, if the probe
was raised or lowered by one foot, the harmonic distortion disappeared.
This indicated a highly directional pattern which was expected if the
projector were introducing the harmonic.
Some of the problems mentioned above were also present during

tests on the impedance wedge baffle. The experimental techniques and
procedures for the wedge baffle were relatively simple compared to the

finite baffles because the projector was rotated about the wedge.

4.4 Hydrophone Position Relative to Surface

Experiments were conducted to resolve the potential problem of
mounting the LC-10 probe on the finite rigid and soft baffles. Two
options were available: 1) to mount the probe a distance of one diameter
into the test surface, a flush-mount; and 2) to mount the probe so that
it rested on the surface of the baffle, a surface-mount. In Section 2.9,
the response level of a finite hydrophone for the case of a normal inci-
dence is derived. It is very possible that the response of a hydrophone
mounted on the surface will not be equivalent to that of the hydrophone
whose face is flush with the surface.

A groove was cut into the cell-tite neoprene in order to mount
the probe flush to the baffle surface. Positioning of the probe in the

recess of the soft surface was critical because of the existing high

pressure gradients. Difficulty in repeating accurate positioning of the
hydrophone led to pressure response variations of 4 to 5 dB. To reduce

these variations, the probe was mounted inside and flush with the surface
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of a one-inch-wide section of the baffle material. Since the probe
always remained in this section, the variations due to slight geometry
changes were reduced. The probe and container could then be shifted
across the baffle in discrete steps in order to scan the surface.

The first step in determining the level response of the finite
probe was to check the standing wave pattern set up by the soft surface.
A soft surface best shows the effect of the finite probe size. Both
pulsed and CW (continuous waveform) signals were used to set up a standing
wave in front of the baffle. Figure 4.2 shows the relative pressure
level as a function of ka taken in a direction normal to the surface.

The initial position for the hydrophone was flush with the surface.

The solid line is a plot of 2 sin kr for fresh water at 22°C and has

| been shifted to match the first experimental null. The difference
between experimental data and the curve can be attributed to the fact
that the surface impedance is not truly zero as it would be for an ideal
soft surface. The high response at very small distances is most likely

due to scattering from the slot cut into the baffle surface.

When using a rigid baffle, the problems encountered were quite
different. In this instance, no high-pressure gradients occurred at the
surface. However, by recessing a hydrophone into a slotted section of
the 1/2" baffle, leaving only 1/8" thickness of steel, a problem of low
insertion loss arose. In addition, a problem of repeatability occurred
when moving the hydrophone and steel block to different positions on the
baffle. Problems were also evident with bond quality and the presence

of air bubbles, not to mention the time consuming aspect of the procedure.

- | , | ——
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The second option involved mounting the hydrophone so that it
rested on the surface of the baffle. Repeatability checks on the surface-
mounted hydrophone were very good, thus avoiding the major problem of the
buried probe. Directivity patterns were recorded for each type of probe
mounting to determine whether differences in response at different angles
of incidence existed. The patterns will be discussed in a following
chapter, but the data shows that there is little difference in the patterns
between surface- or flush-mounted probes. Indeed, the data when plotted
as a function of wavelength appear relatively independent of frequency,
as well as probe mounting style. A check was also made with a rigid
baffle and the same conclusions were drawn. In the case of the rigid
baffle, repeatability of data with the buried probe was very inferior to
the surface-mounted probe. All of the data to be analyzed, therefore,

were obtained by a surface mounted hydrophone.

4.5 Experimental Problems and Sources of Errors

It is a well known fact that the presence of air bubbles may con-
stitute an appreciable loss mechanism for acoustic energy. The attenuation
resulting from the presence of bubbles seriously distorts both the
directivity patterns and the frequency response of the hydrophone and
can lead to the accumulation of misleading data. Fortunately, this
problem can be minimized by carefully "wetting' the hydrophone and baffle
with a special detergent solution before each submergence. It is not
necessary to wet the soft surface since the formation of bubbles will
have very little effect on the low impedance surface.

A smooth metal surface is reasonably easy to maintain bubble-free,

however, the baffles used in this study are a mosaic of small squares
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and the Pliobond joints between these squares can easily trap some air
bubbles. Using sufficient caution in wetting the surface prevented the
occurrence of bubble problems on the rigid disk and square. A serious
problem arose for the rigid end cap on the finite cylinder where a large
air cavity was present behind the end cap surface. It was felt that the
Pliobond joints between the mosaic steel blocks of the baffle would hold
under the water pressure of 4.5 1b/sq. in. (9' depth of water). However,
when the pressure was integrated over the area of the baffle face, the
force was found to be 1100 1lbs. which could seriously weaken the mosaic
structure. During initial tests, the contained air found pinhole cracks
in the bonding and leaked out to the baffle surface causing bubble prob-
lems. These pinhole leaks allowed enough water to seep into the housing,
reducing the total inward force present on the baffle's face. All of the
holes were sealed to eliminate these troublesome air bubbles and the
baffle was submerged again. The bonds on a portion of the baffle were
not strong enough to withstand the total water pressure and were sheared,
caving the steel squares inward and flooding the housing. After this
tragic episode, a 1/4" natural rubber diaphragm was bonded to the inside
of the circular end cap and a support system was installed to withstand
the pressure. This rubber provided a seal to prevent air from escaping
through the end cap joints and also provided a vibration isolation from
the wooden support disk which was braced between the end cap and an
internal housing flange to maintain structural integrity during immersion.
This mechanical configuration performed well as long as care was maintained
to assure that no air bubbles were present on either the probe or the

baffle surfaces.
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Experimental errors, in general, are expected to increase with
frequency, to increase at points near the edge due to the large pressure
gradients existing there, and to decrease with increasing absolute values
of P/Po . This was noted experimentally in that the measurements con-
ducted at 15 kHz generally appear more stable and repeatable than did
those at 30 kHz. Also, air bubble problems were more prevalent and
dramatic at the higher frequency.

Another source of potential error which was difficult and time-
consuming to eliminate involved the effects of small frequency variations
on the pattern. The oscillator in the system permitted resolving the
frequencies of 15 kHz and 20 kHz to within +20 Hz, and 30 kHz +50 Hz.
Patterns were run at small incremental frequencies near each of the test
frequencies of interest.

A 100 Hz increase in frequency from 30 kHz caused the diffraction

lobes to shift inward slightly in angle and varied in level by no more

than 2 dB. The patterns were very similar, indicating that small frequency

errors should have little effect on the patterns. At 20 kHz, a change of
40 Hz in frequency had a slight effect at angles of incidence of +144°
where the diffraction lobe changed shape but remained near the same
angular positions and levels. A 40 Hz change at 15 kHz produced almost
no changes of the pattern, and indeed was the most stable of the three
frequencies.

In general, for all frequencies, the repeatability was excellent

in the major lobe area and was good in the diffraction lobe area.




CHAPTER V

IMPEDANCE WEDGE EXPERIMENTAL RESULTS

5.1 Introduction

A description of the impedance wedge baffle has been presented in
Chapter III and the theoretical background in Sections 2.5 to 2.8 and
2.12. The experimental measurement procedure is shown in Figure 3.1.
Acoustic path lengths and receive gate sampling were checked in order to
verify that only one edge of the baffle played a significant role in the

directivity patterns obtained.

5.2 Surface Impedance of Baffle

The impedance of the surface of the baffle is one of the most
important material parameters needed before accurate calculations of the
directivity pattern can be made. The surface impedance of a baffle is
generally dependent upon the angle of incidence or angle of reflection.
Moreover, it is important to determine the impedance at grazing angles
since the field at these angles determine the shadow region level and

the response beyond an angle of +70°. Figure 2.11 is used for the |

coordinate system.

The near-grazing incidence surface impedance can be determined
experimentally by placing two LC-32 transducers (one a source and one a
receiver) on the surface and recording their response levels as they are
separated. It was determined that the baffle was sufficiently large so

that the diffracted field from the edges was low enough to not affect

| — | |
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the measurements. The acoustic centers of both transducers were 0.35"
from the surface and the received pulse was recorded at several separa-
tion distances, then plotted in Figure 5.1. Using equations given in
Section 2.8, theoretical curves were generated for the experimental case

shown in Figure 5.1. Since the impedance is unknown an iteration over

all real and imaginary impedance values from pc to 34 pc was performed.

A complex impedance was determined for each frequency by selecting the
resulting field which most closely agreed with the experimental values.

The impedance ratios obtained from this selection are:

Z/pc(10 kHz) = 3 + j6 ,

Z[pc(20 kHz) = 10 + j3
and

Z/pc(30 kHz) = 3j19 .

These are only approximate impedance values since there is a broad range
of values which closely match the experimental data. At large separation
distances, the received level falls off at the rate of approximately
10 dB per doubling of distance. The data obtained for 60 kHz were
inconclusive so the impedance value at 30 kHz will be used instead. The
field on a rigid surface falls off at a rate of 6 dB per doubling of
distance and on a soft surface at 12 dB.

Many references deal with sound reflection from surfaces, however,
there appears to be no analysis in the literature concerning the attenua-
tion of a wave front close to or on an impedance surface as it propagates

along the surface. This is an area which requires further research.
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5.3 Directivity Patterns for a Sharp Edge i

| Experimental and theoretical directivity patterns are presented

l for a point source located 0.35" from an impedance surface and 12" from

i a 75° wedge.

|
|
{ 5.3.1 Sharp Edge

}f Directivity patterns are shown in Figures 5.2 and 5.3 where
\

experimental (solid line) and theoretical (dashed line) curves are
compared. The general shape of the patterns match well in both the
| illuminated and shadow regions. An especially good match is present for
the ripples in the illuminated region. Notice that the number of
\ ripples increases as the frequency increases. This is due to the source
being a larger number of wavelengths away from the edge of the baffle at

the higher frequencies. The only region in which theoretical and

< e

experimental levels do not match well is between incident angles of about
60° and 90°. A possible source of error could be due to the assumption
that the surface impedance is independent of the angle of incidence. A
method of obtaining the impedance as a function of incidence angle is .

needed. However, the grazing incidence impedance used here is useful in

determining the level of the diffracted field.

In Figure 5.4, several theoretical patterns are depicted which show
the manner in which the pattern changes with changes in the source
distance to the surface. At 20 kHz, as the source is moved to larger
distances from the surface, the illuminated region shows more evidence
of interference effects and the shadow region exhibits a higher diffracted
field level. At 60 kHz, positioning is very critical as can be seen in

the calculated curves. The closer the source is to the surface, the
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Figure 5.2 Directivity Patterns at 10 kHz and 20 kHz of a Transducer
on the Surface of a Sharp 75° Wedge. Experimental (solid
line) and Theoretical (dashed line) are compared.
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Figure 5.3 Directivity Patterns at 30 kHz and 60 kHz of a Transducer

on the Surface of a Sharp 75° Wedge. Experimental (solid
line) and Theoretical (dashed line) are Compared.
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| closer together are the large dips, also, the center lobe and the

shadow area are lower in level.

|

[

} 5.3.2 Sharp Edge with Scattering Strip

!

i A soft 1/4" x 1/2" scattering strip was placed on the top surface

immediately adjacent to the 75° wedge as is illustrated in Figure 3.3.

Directivity patterns were then measured in order to verify whether the
presence of the soft impedance strip changed the diffraction character-
istics of the wedge. A comparison of directivity patterns of the 75°
wedge with and without the soft scattering bar is shown in Figures 5.5
: l and 5.6.

1 It is readily apparent that when the soft scattering bar was added
|
|

to the edge, the level in the shadow region was reduced by 5 to 10 dB.
E The effect has thus been to increase the effective angle of the wedge and
i;ﬁ to introduce a softer impedance at the edge, both of which would tend to

lower the diffracted field level in the shadow region. In the insonified

region, the ripple effect is more evident with the scattering bar present.
A larger ripple effect would indicate either the diffracted field is
higher or that some form of scattering or reflection is adding to the
diffracted field. The latter explanation is most likely the cause since
it would be expected that the diffracted field in the insonified region

would decrease when it decreases in the shadow region.

5.4 Directivity Patterns for a Wedge of Finite Curvature

A wedge with a radius of curvature of 6", shown in Figure 3.1(b),
was used to obtain the directivity patterns which are given in Figures

5.7 and 5.8. The patterns for the smooth curved surface, i.e., no
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Figure 5.5 Comparison of Measured Directivity Patterns at 10 kHz and
20 kHz for a Sharp 75° Wedge With a Scattering Bar (dashed
line) and Without a Scattering Bar (solid line).
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Figure 5.6 Comparison of Measured Directivity Patterns at 30 kHz and
60 kHz for a Sharp 75° Wedge With a Scattering Bar (dashed
line) and Without a Scattering Bar (solid line).
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Figure 5.8 Comparison of Measured Directivity Patterns at 30 kHz and
60 kHz for a 30° Cylindrical Wedge of 6" Radius With and
Without Scattering Bars.
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scattering bar, are represented by solid lines. The broken lines
represent the directivity patterns when a soft bar (Section 3.4) is
placed at the point where the plane is tangent to the curved edge or at
a point 90° along the curved surface from the tangent point.

It is apparent that positioning a soft scattering bar at the
tangent point of the plane and the curved surface has little or no
effect on the directivity patterns at any of the four frequencies recorded.
Placing the scattering bar 90° along the curved surface produces an
interesting effect. At the higher frequencies (30 kHz and 60 kHz),
virtually no significant difference in the directivity patterns can be
observed. A lower diffracted field level, however, is evident in the
shadow region at 20 kHz and even more evident at 10 kHz. An assumption
normally applied to curved surfaces is that, on the basis of Keller's
theory, an edge can be treated as a curved surface whenever its radius
of curvature is comparable with or greater than the wavelength. Here,
the wavelength at 10 kHz is equal to the radius of curvature of the edge.
The level in the shadow region of the directivity pattern obtained at
10 kHz is reduced to 5 to 10 dB when the soft bar is positioned 90°
along the curved surface and is of the same order of decrease as occured
with the sharp edge. As the wavelength decreases, i.e., frequency
increases, the effect of the soft bar on the directivity patterns dis-
appears, leading to the conclusion that the radius of curvature should
be greater than a wavelength before a curved surface analysis can be

applied and high edge attenuation can be expected.




CHAPTER VI

FINITE BAFFLE EXPERIMENTAL RESULTS

6.1 Introduction

A brief examination of a few directivity patterns will serve as
an introduction to the experimental results and should provide some
insight into the general pattern characteristics of a transducer mounted
on finite baffles of various geometries and different impedances.

Figure 6.1 is a composite curve of the directivity patterns of a
transducer mounted in the center of each of the eight baffle configura-
tions described in Table 3.1. The patterns were measured at the mid-test
frequency, 20 kHz, and have been smoothed in the diffraction lobe region
by plotting a locus of the diffraction lobe peaks.

The most striking pattern characteristics are the distinct
differences between the patterns of a transducer on a rigid surface
compared to those on a soft surface. Patterns measured with each of the
rigid test surfaces, Cases IA, IIA, IIIA, and IVA in Table 3.1, show an
oscillatory response or ripple for angles of incidence within + 60° of
the normal. Effects such as these have been predicted in Figures 2.16
and 2.18 which were calculated via the single-edge diffraction model and,
from Figure 2.22, via the multi-edge mode. Interference phenomenon caus-
ing a ripple effect is characteristic of the central pattern lobe for

each of the three baffles involving rigid test surfaces (see Section

3.3.2). Six maxima and five minima are present at approximately +10°,
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+30°, +56°, and 0°, +20°, +42°, respectively, showing good agreement with
Figure 2.22 and verifying that the diffraction theory agrees with the
experimental results. A simple means is available for predicting the
angles at which pressure maxima and minima occur via the basic assumption
of diffraction theory that an edge can be treated as a point where the
incident field is reradiated with a phase shift of 180°. The maxima and

minima can therefore be obtained from the equation,

]

maxima d sin 6 (2n + 1) A/2 ,

minima d sin 0 n\ (6.1)
where n =0, 1, 2 . . . . . . Using this simplified approach the pre-
dicted maxima occur at +9.6°, +30.0°, +56.4° and the minima at 0°, +19.5°,
+41.8°. Excellent agreement between these calculated angles and the
corresponding experimentally measured angles are evident. The '"bright
spot" expected at 180° is present in each of the rigid baffle patterns.

The rigid square surface does not show a strong oscillatory response
due to the lack of axial symmetry. Both the rigid disk and square baffles,
however, produce a -3 dB beamwidth which is approximately 140°. Beyond
these -3 dB angles, the patterns appear similar, having a response level
which decreases by about 15 dB at an incident angle of about +130°. The
close matching of the patterns is not unexpected since the diameter of the
disk has the same dimension as the side of the square. The addition of a
finite, rigid cylinder behind the rigid disk results in a pattern which
has the same characteristic ripple pattern in the insonified region but

has diffraction lobes which are 8 dB lower in the shadow region.
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In contrast, experimental data from soft test surfaces show a
smooth bell-shaped pattern with -3 dB points at approximately +45°. The
diffraction lobes in the shadow region are between 45 and 50 dB below the
peak, the major lobe being very similar in shape for each of the soft
baffles. Again, the "bright spot" is observed, except for the soft
square and the soft end-cap, soft cylinder baffles. The diffraction lobe
level of -46 dB for the pattern from the soft disk was slightly higher
than that for the soft square and soft end-capped cylinders.

A transducer on the rigid end-cap, soft cylinder has a pattern
response which mixes the pattern characteristics obtained on rigid and

soft baffles. At incident angles of less than +60°, the familiar ripple

interference phenomenon of patterns from a rigid disk is observed, however,

at larger angles, the response acts similar to that of a soft baffle and
has a diffraction lobe level 48 dB below its average peak level. It is
of interest to note that the relative peak to diffraction lobe level of
this rigid end-cap, soft cylinder baffle is essentially the same as that
of the soft baffles.

The impedance of the baffle edge, or cylindrical side, therefore,
plays a significant role in the level of the diffraction lobes, whereas
the impedance of the baffle-face plays the most significant role in the
pattern beamwidth. It is very important to incorporate impedance, hence,
element directivity pattern information, into underwater transducer array
or baffle design since it helps to specify which area of the baffle needs
design attention in order to achieve the desired directivity pattern.

The experimental data obtained at 15 kHz are presented in Figure

6.2(a). These patterns are well behaved and give essentially the same
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relative information as did the patterns taken at 20 kHz. The interfer-
ence phenomena seen on the rigid baffles at angles of incidence smaller
than +70° produce five maxima compared to the six maxima of 20 kHz. The
experimental maxima and minima occur at angles of 0°, +27°, +54°, and
+14°, +40°, respectively.

At 30 kHz, Figure 6.2(b), there is evidence of more variation in
data than was present at either of the other two frequencies. Using data
from the rigid disk, the maxima and minima of the ripple occur near 0°,
+12°, +27°, +54° and +6°, +20°, +43°, +65°, respectively. These patterns
are also very similar to those obtained at 20 kHz except the rigid baffles
have a smaller beamwidth and the soft baffles have lower diffraction lobe
levels.

A summary of the diffraction lobe levels and beamwidths of the
centrally positioned transducer for all eight baffles can be found in
Table 6.1. It can be seen that the -3 dB beamwidths obtained on a rigid
baffle are between 107° and 145°, whereas the soft surfaces produce more
consistent and narrower pattern beamwidths of 85° to 96°. These facts
imply that if a wide beam pattern is desired, a rigid baffle should be
used. Alternatively, if a narrow beam with low response to the sides is
desired, a soft baffle should be used instead.

Diffraction lobe levels of patterns obtained with soft surfaces
are more than 20 dB lower than those with rigid surfaces. When a rigid
end-cap is placed on a soft cylinder, a broad pattern characteristic of
a rigid surface, and a low diffraction lobe level characteristic of a
soft surface, is produced. This baffle is of interest since it indicates
that low diffraction lobes can be obtained when the diffracting edge is a

soft material even if the hydrophone is mounted on a rigid surface.
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TABLE 6.1
DIFFRACTION LOBE LEVEL AND BEAMWIDTH FOR A
HYDROPHONE CENTRALLY POSITIONED ON THE BAFFLE
Baffle -3 dB Beamwidth Diffraction Lobe Level
(degrees) (dB)
15 kHz 20 kHz 30 kHz 15 kHz 20 kHz 30 kHz
rigid disk 128 139 124 -15 -16 =12
rigid square 143 142 122 -16 -16 -12
rigid end-cap 138 145 116 -22 =23 -20
rigid cylinder
k. rigid end-cap 136 134 107 =40 -48 -35
B soft cylinder
wi
| soft disk 96 96 96 -43 -45 -48
soft square 92 92 92 =43 =48 *%
soft end-cap 92 90 85 =44 =48 =54
rigid cylinder
soft end-cap 92 86 85 *k *% *k

soft cylinder

NOTE: ** indicates a diffraction lobe level below -50 dB and not
measurable.
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Figures 6.1 and 6.2 depict the directivity patterns for a
transducer positioned at the center of a baffle. The pattern variation
as the transducer is moved closer to the edge of a soft baffle is shown
theoretically in Figure 2.19. Another method of presenting this informa-
tion for experimental data is shown in Figure 6.3. The relative response
level is plotted as a function of distance from the edge for several
angles of incidence. Data from each of the four soft baffles and for
each of the three frequencies are plotted. The data points varied by no
more than 1 to 2 dB from the curves drawn, giving a good indication of
the consistency of the measurementa. This also indicates that the pattern
response on a soft baffle is independent of frequency when the distance
is plotted in wavelengths. Moreover, since all the data for the soft

baffles when plotted on the same curve show minor variations in attenua-

~

~

&

tion, it follows that the geometric shape of a soft baffle is not
important as long as the dimensions are comparable. Diffraction effects
for a transducer mounted on a soft baffle are significant at angles of
incidence beyond 90° and for edge distances of less than one wavelength.

The pattern response level for the soft disk is higher at all angles of

incidence than for the other baffles. Data from the patterns of the four
rigid surfaces are not analyzed in Figure 6.3 since the pronounced
ripples and the high diffraction lobes would mask the information presented
in these curves.

The previous general analysis explains much of the experimental
data obtained. In the following sections some comparisons will be made
of theoretical and experimental patterns and more detailed curves for

each baffle will be presented.
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6.2 Comparison of Theoretical and Experimental Results

The following discussion will be limited to a comparison of
theoretical and experimental patterns for the center frequency, 20 kHz,
and to two transducer positions, viz., the baffle center and one inch
from the edge. In addition, since pattern comparisons for the disk are
representative of the square baffle, the latter will not be specifically
considered.

Directivity patterns for the rigid disk are shown in Figure 6.4.
Theoretical patterns were calculated for each of two surface impedances,
Zl = 22 = 1000 pc , and 26 pc , where the former impedance is equivalent
to a rigid surface and the latter is the characteristic impedance of
steel. Of the two, it is evident that the theoretical pattern for a
rigid surface, Z = 1000 pc , matches the experimental pattern better.

A reasonably good match between theory and experiment is observed. Soft
disk directivity patterns are presented in Figure 6.5. The theoretical
patterns using a surface impedance of Z1 = Z2 = 0.1 pc are an excellent
match with the experimental patterns. The two-edge theoretical model
cannot predict the back edge diffraction, which accounts for the mis-
matched diffraction field near an angle of -180° in Figure 6.5(b).

Rigid end-cap, rigid cylinder directivity patterns are given in
Figure 6.6. The end-cap impedance for steel is Zl = 26 pc and the
aluminum cylinder impedance is Z2 = 9 pc . The pattern obtained with
the centrally positioned transducer is slightly asymmetric, giving a
better match with theory on one side than on the other. 1In Figure 6.6(b),
even though a good match between theory and experiment is present for

angles toward the near edge, 6 > 0° , it is evident that the match between
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theory and experiment is not good near 6 = -90° . Upon reexamining

Figures 6.6(a) and 6.4, the same type of mismatch is present. It appears,
then, that whenever the transducer is more than a few wavelengths away
from the edge, the theoretical model cannot predict diffraction levels
accurately. Yet, the directivity patterns for a soft disk matched very
well. The only conclusion which can be reached is that the impedance
used for the surface of the rigid end-cap is inadequate. Indeed, the
impedance should vary with angle of incidence, being softer for near
grazing incidence. More validity for this explanation is given by over-
laying the soft disk patterns onto Figure 6.6 and observing that the
'rounded edges' present in the soft disk patterns are also present in the
rigid end-cap, rigid cylinder patterns.

The poor match between theory and experiment in Figure 6.7 for
the rigid end-cap, soft cylinder patterns (Zl = 26 pc , Z2 = 0.1 pc) can
also be explained by the need for a more accurate description of the
surface impedance. The theoretical and experimental patterns for a soft
end-cap, soft cylinder, Figure 6.8, match quite well. In Figure 6.9, the
results for a soft end-cap, rigid cylinder baffle again show a slight
mismatch between the theoretical and experimental patterns. The theoreti-
cal model predicts directivity patterns which match the experimental
patterns very well for all baffles except the rigid end-cap, soft cylinder
where a better model for surface impedance as a function of incidence

angle 1is needed.

6.3 Planar Baffles

6.3.1 Rigid Baffles

It is difficult to obtain quantitative information from the

directivity patterns of the disk and square rigid planar baffles shown
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in Figures 6.10 through 6.12. However, qualitative and some general

quantitative comparisons can be made. As the frequency increases, there
is a significant increase in the number of diffraction lobes which are
present, and the definition or shape of the "major lobe" becomes more
pronounced. The term major lobe refers to that portion of a pattern
between 6 = +90° and, hence, is least affected by the diffraction
phenomena. At higher frequencies, the baffle is effectively larger (in
terms of wavelengths) and the beamwidth of the pattern is expected to
decrease. As the transducer moves toward the edge, the response level

in that direction increases and the fluctuations tend to decrease. The
patterns at both 15 kHz and 20 kHz for the transducer mounted on the edge
and 1/2" from the edge have a noticably higher level in the shadow region.
When compared to the pattern of the centrally positioned transducer, the
edge pattern is between 5 to 10 dB higher. Patterns at 30 kHz, however,
do not show strong increases in shadow region levels as the probe is
moved toward the edge.

The same general comments are true for the rigid square. Indeed,
there is a great similarity between the two sets of data, the only basic
difference being that the rigid square does not exhibit the large ripple
in the insonified region as does the rigid disk. Note that the levels of
the diffraction lobes at 30 kHz are higher than at the two lower frequen-
cies. If the transmission of sound through the steel plate were dominant,
the highest frequency would be expected to have the lowest diffraction
lobe level, contrary to the measured results. The experimental data also
show that the level of the diffraction lobes decrease from the shadow

boundary to 6 = 180° providing another indication that diffraction
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information is not being masked by transmission through the steel

baffle.

6.3.2 Soft Baffles

Directivity patterns shown in Figures 6.13 through 6.15 for the
soft disk and soft square demonstrate the changes in the patterns as a
transducer is moved across a soft surface. The patterns for the soft
disk were taken with a surface-mounted hydrophone, whereas the patterns
for the soft square were taken with a flush-mounted hydrophone. See
Section 3.3.2 for details. Note that the differences in the patterns are
negligible. Changes in the patterns as the transducer is moved are much
more evident on the soft baffles than on the rigid baffles because the
diffracted field in the shadow region is reduced to a very low level.
The low level of the field incident at the back surface gives the effect
of a two-edge diffraction surface and allows easier analysis of the
diffracted field.

It is clearly evident that as the probe is moved toward an edge,
its response increases in that direction. From the experimental data,
it appears that for angles in the shadow region, i.e., angles beyond 90°
(excluding points which are diffraction lobe limited), the response level
of the transducer increases approximately by equal percentages, or
constant dB increments, as its distance to the edge is halved. This is
generally true for each of the three frequencies tested. It is also
evident that as frequency increases, the skirts of the main lobe become

narrower and the level of the diffraction lobes decrease.
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6.4 Cylindrical Baffles

6.4.1 Rigid End-Cap

Directivity patterns for a trancducer mounted on a rigid end-cap
of a cylinder, Figures 6.16 through 6.18, exhibit a ripple effect in the
insonified region very similar to those obtained with the rigid baffles
already discussed. The number of ripples across the main lobe and the
depth or magnitude of these fluctuations increase with frequency.

Directivity patterns using a rigid end-cap on a soft cylinder,
Figures 6.16(b), 6.17(b), and 6.18(b) display a low diffraction lobe

level comparable to that of the soft baffles previously described. When

the soft cylinder is replaced by a rigid cylinder, Figures 6.16(a), 6.17(a),
and 6.18(a), the diffraction lobe level increases, as expected, being
approximately 10 dB lower than those of the rigid disk and square. The
major lobe is well defined and relatively independent of the impedance of
the cylinder. The diffraction lobes, however, can be reduced by about

20 dB by using a soft cylinder in place of a rigid cylinder.

6.4.2 Soft End-Cap

Directivity patterns for a transducer mounted on a soft end-cap of
a cylinder are given in Figures 6.19 through 6.21. The soft end-cap on a
soft cylinder gives rise to the typical patterns obtained on soft surfaces
and adds no new information to the observations presented earlier for this
type of surface. The diffraction lobes are extremely low, e.g., -60 dB
for the 30 kHz case. Truncation of data for some cases is due to the
system noise and low signal reception.

The pattern responses with a rigid cylinder are smooth over the

major lobe. Near and beyond an angle of 90°, however, the pattern exhibits
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some ripple effects which become more evident as the frequency increases,
although, it should be noted that they are present only on this particular
baffle. In addition, the diffraction lobe levels for the patterns
obtained on the rigid cylinder are higher than those on the soft cylinder.
Again, at higher frequencies, the directivity patterns have narrower
major lobes.

It is observed that the baffle which has a soft end-cap and a
rigid cylinder has rather high diffraction lobes when the hydrophone is
moved toward the edge of the baffle. Hence, it is important that the
elements in an underwater transducer array mounted on a soft end-cap and
a rigid cylinder baffle are positioned at least one or two wavelengths
from the edge. These diffraction lobe levels for patterns obtained with
off-center mounted transducers are higher than those obtained on a rigid

end-cap, soft cylinder baffle.

6.5 Scattering Rings on a Rigid Surface

6.5.1 Rigid Ring

Figures 6.22 and 6.23 show that a steel ring around the edge can
produce some pattern control on the transducer when it is near the baffle
edge. However, there appears to be an increase in response at other

angles of incidence which may be a detriment for pattern control.

6.5.2 Soft Ring

One can see in Figures 6.24 and 6.25 that the transducer response

in the direction of the near edge is dramatically reduced by the addition
of a soft ring. However, since the entire pattern is affected, it cannot

be concluded that pattern control for an array can be achieved.




F it

RELATIVE PRESSURE LEVEL, P/P, (dB)

RELATIVE PRESSURE LEVEL, P/P, (dB)

142

4r (@)

DISTANCE

FROM EDGE \v \TF

(in.) )
1

-%0 0

90 180

DISTANCE \’\
/ FROM EDGE |
: (in.) ::
-w ] 1_ ‘.
-m — =+ (b) T
-50 1 I e g L 1 = n
-180 -90 0 90 180

.

ANGLE OF INCIDENCE, e (deg)

Figure 6.22  Patterns of a Hydrophone on a Rigid Disk (a) and a Rigid
Square (b) with a Steel Scattering Bar at 20 kHz.
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Figure 6.23 Patterns of a Hydrophone on a Rigid End-Cap on a Rigid (a)

and a Soft (b) Cylinder with a Steel Scattering Ring at
20 kHz.
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In Figure 6.26, the directivity patterns of a transducer 1/2" from
the edge of a rigid square baffle are compared with the patterns obtained
when each of two impedance bars are introduced. The transducer in this
position is adjacent to the bar and, as the curves indicate, the soft bar
has a much more significant effect on the response of the transducer than

does the rigid bar.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

Distinct differences are evident between the directivity patterns
obtained for a transducer mounted on a rigid surface and one mounted on
a soft surface. Patterns produced using rigid baffle surfaces exhibited
an interference effect, or ripples, in the insonified region. The
number of ripples and their angular positions can be predicted very well
by the Geometrical Theory of Diffraction. The number of ripples decrease
as the frequency decreases or as the transducer is moved closer to the
edge, and conversely. The transducer to edge separation distance should
be expressed in wavelengths.

As expected, when a transducer is mcved closer to the edge, the
level of the diffracted field in the shadow region increases, producing
an asymmetric pattern. Patterns generated by using a simplified
theoretical model closely match the asymmetric experimental patterns, thus
confirming the Geometrical Theory of Diffraction. Pattern asymmetry is
analyéed more easily on a soft baffle because the low level diffraction
field incident at the back surface gives the illusion of a semi-infinite
baffle. Theoretical directivity patterns for the finite baffles were
obtained using a two-dimensional, two-edge diffraction model, i.e., a
semi-infinite strip, utilizing the Malyuzhinets diffraction coefficient.
The Malyuzhinets diffraction coefficient accounts for a finite surface

impedance, whereas the Sommerfeld diffraction coefficient is valid only
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for rigid or soft surfaces. Whenever any case of mixed boundary conditions
is present, i.e., one surface impedance differs from the other, then the
Malyuzhinets diffraction coefficient must be used. The two-dimensional,
two-edge diffraction model which neglects the back diffraction edges does
not appear to result in a serious loss of information. Good agreement
between theory and experiment is evident with the calculated patterns
matching the ripples and predicting the diffraction lobe level in the
shadow region, see Section 6.2.

It should be noticed, however, that the calculated and measured
patterns do not match well for near grazing angles when the transducer
is greater than a few wavelengths from the edge. The mismatch is not a
result of diffraction theory, rather, it is a result of using a material
impedance value independent of the angle of incidence. The baffle
impedance depends on the angle of incidence of the acoustic field and
should be taken into consideration in the calculation of directivity
patterns. A method of experimentally obtaining surface impedance as a
function of incidence angle is needed.

The impedance of the surface on which the transducer is located
has the predominant influence on the directivity pattern. When the
impedance is low, a smooth "bell-shaped" directivity pattern with a
highly attenuated diffraction field will result. Hence, no ripples are
present in the insonified region and very low diffraction lobe levels
are present in the shadow region even if the side of the baffle is rigid.
As the surface impedance increases from soft to rigid, the level of the
diffracted field in the shadow region increases and an interference

effect causing ripples becomes evident in the insonified region. However,




if the impedance of the surface on which the transducer is located is

high or rigid, the impedance of the side of the baffle does have a pro-
nounced effect on the diffraction lobe level. If the rigid impedance on
the side of the baffle is replaced by a soft impedance, the diffraction
lobe level can be lowered by as much as 20 dB. In addition to the effect
on the diffraction lobe level, surface impedance affects the beamwidth

of a transducer element, viz., a soft surface minimizes beamwidth while

a rigid surface maximizes beamwidth. It is very important, therefore, to
incorporate surface impedance into underwater transducer array or baffle
design. These facts will tell a sonar designer that if a specific size

baffle is used and if a wide beamwidth pattern is desired, then one

should use a rigid baffle. If a narrow beamwidth with low response to the

sides is desired, then a soft baffle should be used.

Scattering bars have some interesting effects on directivity
patterns. The effect of a soft scatterer on the sharp edge of the
impedance wedge appears to lower the diffracted field by 5 to 10 dB while
increasing the interference effect in the insonified region. When the
soft scatterer is placed on the cylindrical edge of the impedance wedge,
the diffracted field is reduced only at a frequency where the wavelength
is comparable to the radius of curvature. At higher frequencies, the
patterns are not affected by the addition of the soft scatterer. With
finite baffles, it was shown that the soft scattering bar has a greater
effect on patterns than does the rigid scatterer. The response in the
direction of the near edge is reduced, however, the entire pattern is
altered so that it cannot be concluded that pattern control (elimination
of pattern asymmetry) is achievable. Further study in this area of

diffraction is needed.




The power of the Geometrical Theory of Diffraction has been

demonstrated, in that it provides a technique of analyzing scattering

from complex bodies by breaking them up into simpler forms. Although

this is an approximate method for obtaining the terms dominant in acoustic
scattering, it provides an insight into the physical mechanisms. When

the geometry of an object is large in terms of a wavelength, as are the
dimensions of the baffle investigated, then scattering and diffraction

: are found to be essentially local phenomena. It has also been verified
that even at distances of one-third of a wavelength, the theoretically

predicted diffracted field is a valid approximation.
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